Sampling Discretization of Integral Norms and Its Application
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 106-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper addresses a problem of sampling discretization of integral norms of elements of finite-dimensional subspaces satisfying some conditions. We prove sampling discretization results under two standard kinds of assumptions: conditions on the entropy numbers and conditions in terms of Nikol'skii-type inequalities. We prove some upper bounds on the number of sample points sufficient for good discretization and show that these upper bounds are sharp in a certain sense. Then we apply our general conditional results to subspaces with special structure, namely, subspaces with tensor product structure. We demonstrate that the application of theorems based on Nikol'skii-type inequalities provides somewhat better results than the application of theorems based on entropy numbers conditions. Finally, we apply discretization results to the problem of sampling recovery.
Keywords: sampling discretization, entropy numbers, Nikol'skii inequality, recovery.
@article{TM_2022_319_a8,
     author = {F. Dai and V. N. Temlyakov},
     title = {Sampling {Discretization} of {Integral} {Norms} and {Its} {Application}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {106--119},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a8/}
}
TY  - JOUR
AU  - F. Dai
AU  - V. N. Temlyakov
TI  - Sampling Discretization of Integral Norms and Its Application
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 106
EP  - 119
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_319_a8/
LA  - ru
ID  - TM_2022_319_a8
ER  - 
%0 Journal Article
%A F. Dai
%A V. N. Temlyakov
%T Sampling Discretization of Integral Norms and Its Application
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 106-119
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_319_a8/
%G ru
%F TM_2022_319_a8
F. Dai; V. N. Temlyakov. Sampling Discretization of Integral Norms and Its Application. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 106-119. http://geodesic.mathdoc.fr/item/TM_2022_319_a8/

[1] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., “Sampling discretization of integral norms”, Constr. Approx., 54:3 (2021), 455–471 ; arXiv: 2001.09320v1 [math.CA] | DOI | MR

[2] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., “Entropy numbers and Marcinkiewicz-type discretization”, J. Funct. Anal., 281:6 (2021), 109090 ; arXiv: 2001.10636v1 [math.CA] | DOI | MR

[3] F. Dai, A. Prymak, V. N. Temlyakov, and S. Yu. Tikhonov, “Integral norm discretization and related problems”, Russ. Math. Surv., 74:4 (2019), 579–630 | DOI | MR

[4] Ditzian Z., Prymak A., “On Nikol'skii inequalities for domains in $\mathbb R^d$”, Constr. Approx., 44:1 (2016), 23–51 | DOI | MR

[5] Kashin B., Kosov E., Limonova I., Temlyakov V., “Sampling discretization and related problems”, J. Complexity, 71 (2022), 101653 ; arXiv: 2109.07567v1 [math.FA] | DOI | MR

[6] Kosov E.D., “Marcinkiewicz-type discretization of $L^p$-norms under the Nikolskii-type inequality assumption”, J. Math. Anal. Appl., 504:1 (2021), 125358 | DOI | MR

[7] Limonova I., Temlyakov V., “On sampling discretization in $L_2$”, J. Math. Anal. Appl., 515:2 (2022), 126457 ; arXiv: 2009.10789v1 [math.FA] | DOI | MR

[8] Temlyakov V., Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011 | MR

[9] Temlyakov V.N., “The Marcinkiewicz-type discretization theorems”, Constr. Approx., 48:2 (2018), 337–369 ; arXiv: 1703.03743v1 [math.NA] | DOI | MR

[10] Temlyakov V., Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018 | MR

[11] V. N. Temlyakov, “Sampling discretization of integral norms of the hyperbolic cross polynomials”, Proc. Steklov Inst. Math., 312 (2021), 270–281 | DOI | MR

[12] Temlyakov V., “On optimal recovery in $L_2$”, J. Complexity, 65 (2021), 101545 ; arXiv: 2010.03103v1 [math.NA] | DOI | MR