Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a5, author = {G. G. Gevorkyan}, title = {On the {Representation} of {Measurable} {Functions} by {Absolutely} {Convergent} {Orthogonal} {Spline} {Series}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {73--82}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a5/} }
TY - JOUR AU - G. G. Gevorkyan TI - On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 73 EP - 82 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_319_a5/ LA - ru ID - TM_2022_319_a5 ER -
%0 Journal Article %A G. G. Gevorkyan %T On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 73-82 %V 319 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_319_a5/ %G ru %F TM_2022_319_a5
G. G. Gevorkyan. On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 73-82. http://geodesic.mathdoc.fr/item/TM_2022_319_a5/