On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 73-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that if $\{f_n(t)\}_{n=-m+2}^{\infty }$ is an orthonormal system in $L^2[0,1]$ consisting of splines of order $m$ with dyadic rational knots and $f(t)$ is an a.e. finite measurable function, then, first, there exists a series with respect to this system that converges absolutely a.e. to this function and, second, for any $\varepsilon >0$ the function $f(t)$ can be changed on a set of measure less than $\varepsilon $ so that the corrected function has a uniformly absolutely convergent Fourier series with respect to this system.
Keywords: spline of order $m$, absolutely convergent series, representation of functions, correction of functions.
@article{TM_2022_319_a5,
     author = {G. G. Gevorkyan},
     title = {On the {Representation} of {Measurable} {Functions} by {Absolutely} {Convergent} {Orthogonal} {Spline} {Series}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a5/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 73
EP  - 82
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_319_a5/
LA  - ru
ID  - TM_2022_319_a5
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 73-82
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_319_a5/
%G ru
%F TM_2022_319_a5
G. G. Gevorkyan. On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 73-82. http://geodesic.mathdoc.fr/item/TM_2022_319_a5/

[1] Arutyunyan F.G., “O ryadakh po sisteme Khaara”, DAN ArmSSR, 42:3 (1966), 134–140

[2] Ciesielski Z., “Spline bases in function spaces”, Approximation theory: Proc. Conf. (Poznan, 1972), D. Reidel Publ. Co., Dordrecht, 1975, 49–54 | DOI | MR

[3] Ciesielski Z., “Constructive function theory and spline systems”, Stud. math., 53:3 (1975), 277–302 | DOI | MR

[4] DeVore R.A., Lorentz G.G., Constructive approximation, Grundl. Math. Wiss., 303, Springer, Berlin, 1993 | MR

[5] Franklin Ph., “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–529 | DOI | MR

[6] Gevorkyan G.G., “O predstavlenii izmerimykh funktsii absolyutno skhodyaschimisya ryadami po sisteme Franklina”, DAN ArmSSR, 83:1 (1986), 15–18

[7] G. G. Gevorkyan, “On the convergence of Franklin series to $+\infty $”, Math. Notes, 106:3–4 (2019), 334–341 | DOI | MR

[8] Gevorkyan G.G., Keryan K.A., Poghosyan M.P., “Convergence to infinity for orthonormal spline series”, Acta math. Hung., 162:2 (2020), 604–617 | DOI | MR

[9] Gundy R.F., “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR

[10] Haar A., “Zur Theorie der orthogonalen Funktionensysteme. (Erste Mitteilung.)”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR

[11] S. V. Konyagin, “Limits of indeterminacy of trigonometric series”, Math. Notes, 44:6 (1988), 910–920 | DOI | MR

[12] Luzin N.N., Integral i trigonometricheskii ryad, Gostekhizdat, M.; L., 1951 | MR

[13] V. A. Skvortsov, “Differentiation with respect to nets and the Haar series”, Math. Notes, 4:1 (1968), 509–513 | DOI | MR

[14] Talalyan A.A., Arutyunyan F.G., “O skhodimosti ryadov po sisteme Khaara k $+\infty $”, Mat. sb., 66:2 (1965), 240–247