Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a5, author = {G. G. Gevorkyan}, title = {On the {Representation} of {Measurable} {Functions} by {Absolutely} {Convergent} {Orthogonal} {Spline} {Series}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {73--82}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a5/} }
TY - JOUR AU - G. G. Gevorkyan TI - On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 73 EP - 82 VL - 319 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_319_a5/ LA - ru ID - TM_2022_319_a5 ER -
%0 Journal Article %A G. G. Gevorkyan %T On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 73-82 %V 319 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_319_a5/ %G ru %F TM_2022_319_a5
G. G. Gevorkyan. On the Representation of Measurable Functions by Absolutely Convergent Orthogonal Spline Series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 73-82. http://geodesic.mathdoc.fr/item/TM_2022_319_a5/
[1] Arutyunyan F.G., “O ryadakh po sisteme Khaara”, DAN ArmSSR, 42:3 (1966), 134–140
[2] Ciesielski Z., “Spline bases in function spaces”, Approximation theory: Proc. Conf. (Poznan, 1972), D. Reidel Publ. Co., Dordrecht, 1975, 49–54 | DOI | MR
[3] Ciesielski Z., “Constructive function theory and spline systems”, Stud. math., 53:3 (1975), 277–302 | DOI | MR
[4] DeVore R.A., Lorentz G.G., Constructive approximation, Grundl. Math. Wiss., 303, Springer, Berlin, 1993 | MR
[5] Franklin Ph., “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–529 | DOI | MR
[6] Gevorkyan G.G., “O predstavlenii izmerimykh funktsii absolyutno skhodyaschimisya ryadami po sisteme Franklina”, DAN ArmSSR, 83:1 (1986), 15–18
[7] G. G. Gevorkyan, “On the convergence of Franklin series to $+\infty $”, Math. Notes, 106:3–4 (2019), 334–341 | DOI | MR
[8] Gevorkyan G.G., Keryan K.A., Poghosyan M.P., “Convergence to infinity for orthonormal spline series”, Acta math. Hung., 162:2 (2020), 604–617 | DOI | MR
[9] Gundy R.F., “Martingale theory and pointwise convergence of certain orthogonal series”, Trans. Amer. Math. Soc., 124:2 (1966), 228–248 | DOI | MR
[10] Haar A., “Zur Theorie der orthogonalen Funktionensysteme. (Erste Mitteilung.)”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR
[11] S. V. Konyagin, “Limits of indeterminacy of trigonometric series”, Math. Notes, 44:6 (1988), 910–920 | DOI | MR
[12] Luzin N.N., Integral i trigonometricheskii ryad, Gostekhizdat, M.; L., 1951 | MR
[13] V. A. Skvortsov, “Differentiation with respect to nets and the Haar series”, Math. Notes, 4:1 (1968), 509–513 | DOI | MR
[14] Talalyan A.A., Arutyunyan F.G., “O skhodimosti ryadov po sisteme Khaara k $+\infty $”, Mat. sb., 66:2 (1965), 240–247