Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 51-63

Voir la notice de l'article provenant de la source Math-Net.Ru

For a domain $G\subset \mathbb R^n$ with an anisotropic peak, we construct integral representations of functions in terms of derivatives and establish conditions for the embedding $W_p^s(G)\subset L_q(G)$ of the Sobolev space in the Lebesgue space for $1\leq p$.
Keywords: Sobolev space, domain with a peak, embedding theorem.
@article{TM_2022_319_a3,
     author = {O. V. Besov},
     title = {Conditions for {Embeddings} of {Sobolev} {Spaces} on a {Domain} with {Anisotropic} {Peak}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {51--63},
     publisher = {mathdoc},
     volume = {319},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a3/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 51
EP  - 63
VL  - 319
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_319_a3/
LA  - ru
ID  - TM_2022_319_a3
ER  - 
%0 Journal Article
%A O. V. Besov
%T Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 51-63
%V 319
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_319_a3/
%G ru
%F TM_2022_319_a3
O. V. Besov. Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 51-63. http://geodesic.mathdoc.fr/item/TM_2022_319_a3/