Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_319_a12, author = {Egor D. Kosov}, title = {Remarks on {Sampling} {Discretization} of {Integral} {Norms} of {Functions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {202--212}, publisher = {mathdoc}, volume = {319}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_319_a12/} }
Egor D. Kosov. Remarks on Sampling Discretization of Integral Norms of Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation Theory, Functional Analysis, and Applications, Tome 319 (2022), pp. 202-212. http://geodesic.mathdoc.fr/item/TM_2022_319_a12/
[1] Batson J., Spielman D.A., Srivastava N., “Twice-Ramanujan sparsifiers”, SIAM J. Comput., 41:6 (2012), 1704–1721 | DOI | MR
[2] Bourgain J., Lindenstrauss J., Milman V., “Approximation of zonoids by zonotopes”, Acta math., 162:1–2 (1989), 73–141 | DOI | MR
[3] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., “Sampling discretization of integral norms”, Constr. Approx., 54:3 (2021), 455–471 | DOI | MR
[4] Dai F., Prymak A., Shadrin A., Temlyakov V., Tikhonov S., “Entropy numbers and Marcinkiewicz-type discretization”, J. Funct. Anal., 281:6 (2021), 109090 | DOI | MR
[5] F. Dai, A. Prymak, V. N. Temlyakov, and S. Yu. Tikhonov, “Integral norm discretization and related problems”, Russ. Math. Surv., 74:4 (2019), 579–630 | DOI | MR
[6] Dai F., Temlyakov V., Universal sampling discretization, E-print, 2021, arXiv: 2107.11476 [math.FA] | MR
[7] Dai F., Temlyakov V., Sampling discretization of integral norms and its application, E-print, 2021, arXiv: 2109.09030 [math.NA] | MR
[8] Harvey N.J.A., Olver N., “Pipage rounding, pessimistic estimators and matrix concentration”, Proc. 25th Annu. ACM–SIAM Symp. on Discrete Algorithms, SODA 2014, SIAM, Philadelphia, PA, 2014, 926–945 | MR
[9] B. S. Kashin, “Lunin's method for selecting large submatrices with small norm”, Sb. Math., 206:7 (2015), 980–987 | DOI | MR
[10] B. S. Kashin, “Decomposing an orthogonal matrix into two submatrices with extremally small $(2,1)$-norm”, Russ. Math. Surv., 72:5 (2017), 971–973 | DOI | MR
[11] Kashin B., Konyagin S., Temlyakov V., Sampling discretization of the uniform norm, E-print, 2021, arXiv: 2104.01229 [math.NA]
[12] Kashin B., Kosov E., Limonova I., Temlyakov V., “Sampling discretization and related problems”, J. Complexity, 71 (2022), 101653 | DOI | MR
[13] B. S. Kashin and I. V. Limonova, “Decomposing a matrix into two submatrices with extremally small $(2,1)$-norm”, Math. Notes, 106:1–2 (2019), 63–70 | DOI | MR
[14] B. S. Kashin and V. N. Temlyakov, “Observations on discretization of trigonometric polynomials with given spectrum”, Russ. Math. Surv., 73:6 (2018), 1128–1130 | DOI | MR
[15] Kosov E.D., “Marcinkiewicz-type discretization of $L^p$-norms under the Nikolskii-type inequality assumption”, J. Math. Anal. Appl., 504:1 (2021), 125358 | DOI | MR
[16] Ledoux M., Talagrand M., Probability in Banach spaces: Isoperimetry and processes, Springer, Berlin, 2013 | MR
[17] I. V. Limonova, “Decomposing a matrix into two submatrices with smaller $(2,1)$-norms”, Russ. Math. Surv., 71:4 (2016), 781–783 | DOI | MR
[18] I. V. Limonova, “Decomposing a matrix into two submatrices with extremely small operator norm”, Math. Notes, 108:1–2 (2020), 137–141 | DOI | MR
[19] I. V. Limonova, “Exact discretization of the $L_2$-norm with negative weight”, Math. Notes, 110:3–4 (2021), 458–462 | DOI | MR
[20] Limonova I., Temlyakov V., “On sampling discretization in $L_2$”, J. Math. Anal. Appl., 515:2 (2022), 126457 | DOI | MR
[21] A. A. Lunin, “Operator norms of submatrices”, Math. Notes, 45:3 (1989), 248–252 | DOI | MR
[22] Marcus A.W., Spielman D.A., Srivastava N., “Interlacing families. II: Mixed characteristic polynomials and the Kadison–Singer problem”, Ann. Math. Ser. 2, 182:1 (2015), 327–350 | DOI | MR
[23] Nitzan S., Olevskii A., Ulanovskii A., “Exponential frames on unbounded sets”, Proc. Amer. Math. Soc., 144:1 (2016), 109–118 | DOI | MR
[24] Talagrand M., “Embedding subspaces of $L_1$ into $l^N_1$”, Proc. Am. Math. Soc., 108:2 (1990), 363–369 | MR
[25] Talagrand M., “Embedding subspaces of $L_p$ in $\ell _p^N$”, Geometric aspects of functional analysis: Israel seminar (GAFA) 1992–94, Oper. Theory. Adv. Appl., 77, Birkhäuser, Basel, 1995, 311–326 | MR
[26] Talagrand M., Upper and lower bounds for stochastic processes: Modern methods and classical problems, Springer, Berlin, 2014 | MR
[27] Temlyakov V.N., “The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials”, Jaen J. Approx., 9:1–2 (2017), 37–63 | MR
[28] Temlyakov V., Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018 | MR
[29] Temlyakov V.N., “The Marcinkiewicz-type discretization theorems”, Constr. Approx., 48:2 (2018), 337–369 | DOI | MR
[30] Temlyakov V.N., “Universal discretization”, J. Complexity, 47 (2018), 97–109 | DOI | MR
[31] Temlyakov V.N., “Sampling discretization error of integral norms for function classes”, J. Complexity, 54 (2019), 101408 | DOI | MR
[32] V. N. Temlyakov, “Sampling discretization of integral norms of the hyperbolic cross polynomials”, Proc. Steklov Inst. Math., 312 (2021), 270–281 | DOI | MR
[33] A. Zygmund, Trigonometric Series, v. 1, 2, Univ. Press, Cambridge, 1959 | MR