Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_318_a5, author = {S. M. Gusein-Zade}, title = {The {Euler} {Characteristic} of a {Complete} {Intersection} in {Terms} of the {Newton} {Polyhedra} {Revisited}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {66--72}, publisher = {mathdoc}, volume = {318}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a5/} }
TY - JOUR AU - S. M. Gusein-Zade TI - The Euler Characteristic of a Complete Intersection in Terms of the Newton Polyhedra Revisited JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 66 EP - 72 VL - 318 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_318_a5/ LA - ru ID - TM_2022_318_a5 ER -
%0 Journal Article %A S. M. Gusein-Zade %T The Euler Characteristic of a Complete Intersection in Terms of the Newton Polyhedra Revisited %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 66-72 %V 318 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_318_a5/ %G ru %F TM_2022_318_a5
S. M. Gusein-Zade. The Euler Characteristic of a Complete Intersection in Terms of the Newton Polyhedra Revisited. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 66-72. http://geodesic.mathdoc.fr/item/TM_2022_318_a5/
[1] A'Campo N., “La fonction zêta d'une monodromie”, Comment. math. Helv., 50 (1975), 233–248 | DOI | MR | Zbl
[2] V. I. Arnold, Arnold's Problems, Springer, Berlin, 2004 | MR | MR
[3] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, v. 2, Monogr. Math., 83, Monodromy and Asymptotics of Integrals, Birkhäuser, Boston, 1988 | MR | Zbl
[4] D. N. Bernshtein, “The number of roots of a system of equations”, Funct. Anal. Appl., 9:3 (1975), 183–185 | DOI | MR
[5] Bernshtein D.N., Kushnirenko A.G., Khovanskii A.G., “Mnogogranniki Nyutona”, UMN, 31:3 (1976), 201–202 | MR | Zbl
[6] Ehlers F., “Eine Klasse komplexer Mannigfaltigkeiten und die Auflösung einiger isolierter Singularitäten”, Math. Ann., 218:2 (1975), 127–156 | DOI | MR | Zbl
[7] Ewald G., Combinatorial convexity and algebraic geometry, Grad. Texts Math., 168, Springer, New York, 1996 | DOI | MR | Zbl
[8] S. M. Gusein-Zade, “Integration with respect to the Euler characteristic and its applications”, Russ. Math. Surv., 65:3 (2010), 399–432 | DOI | MR | MR | Zbl
[9] A. G. Khovanskii, “Newton polyhedra and toroidal varieties”, Funct. Anal. Appl., 11:4 (1977), 289–296 | DOI | MR
[10] A. G. Khovanskii, “Newton polyhedra and the genus of complete intersections”, Funct. Anal. Appl., 12:1 (1978), 38–46 | DOI | MR | Zbl | Zbl
[11] Viro O.Ya., “Some integral calculus based on Euler characteristic”, Topology and geometry—Rohlin seminar, Lect. Notes Math., 1346, Springer, Berlin, 1988, 127–138 | DOI | MR