Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 31-42

Voir la notice de l'article provenant de la source Math-Net.Ru

The lower central series of a right-angled Coxeter group $\mathrm {RC}_{\mathcal K}$ and the corresponding graded Lie algebra $L(\mathrm {RC}_{\mathcal K})$ associated with the lower central series of a right-angled Coxeter group are studied. Relations are obtained in the graded components of the Lie algebra $L(\mathrm {RC}_{\mathcal K})$. A basis of the fourth graded component of $L(\mathrm {RC}_{\mathcal K})$ for groups with at most four generators is described.
@article{TM_2022_318_a2,
     author = {Ya. A. Veryovkin},
     title = {Graded {Components} of the {Lie} {Algebra} {Associated} with the {Lower} {Central} {Series} of a {Right-Angled} {Coxeter} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a2/}
}
TY  - JOUR
AU  - Ya. A. Veryovkin
TI  - Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 31
EP  - 42
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a2/
LA  - ru
ID  - TM_2022_318_a2
ER  - 
%0 Journal Article
%A Ya. A. Veryovkin
%T Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 31-42
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a2/
%G ru
%F TM_2022_318_a2
Ya. A. Veryovkin. Graded Components of the Lie Algebra Associated with the Lower Central Series of a Right-Angled Coxeter Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 31-42. http://geodesic.mathdoc.fr/item/TM_2022_318_a2/