Homogeneous Algebraic Varieties and Transitivity Degree
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an algebraic variety such that the group $\mathrm {Aut}(X)$ acts on $X$ transitively. We define the transitivity degree of $X$ as the maximum number $m$ such that the action of $\mathrm {Aut}(X)$ on $X$ is $m$-transitive. If the action of $\mathrm {Aut}(X)$ is $m$-transitive for all $m$, the transitivity degree is infinite. We compute the transitivity degree for all quasi-affine toric varieties and for many homogeneous spaces of algebraic groups. We also discuss a conjecture and open questions related to this invariant.
Keywords: algebraic variety, homogeneous space, quasi-affine variety, transitivity degree, infinite transitivity, toric variety, unirationality.
Mots-clés : automorphism group, algebraic group
@article{TM_2022_318_a1,
     author = {Ivan V. Arzhantsev and Yulia I. Zaitseva and Kirill V. Shakhmatov},
     title = {Homogeneous {Algebraic} {Varieties} and {Transitivity} {Degree}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {318},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_318_a1/}
}
TY  - JOUR
AU  - Ivan V. Arzhantsev
AU  - Yulia I. Zaitseva
AU  - Kirill V. Shakhmatov
TI  - Homogeneous Algebraic Varieties and Transitivity Degree
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 17
EP  - 30
VL  - 318
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_318_a1/
LA  - ru
ID  - TM_2022_318_a1
ER  - 
%0 Journal Article
%A Ivan V. Arzhantsev
%A Yulia I. Zaitseva
%A Kirill V. Shakhmatov
%T Homogeneous Algebraic Varieties and Transitivity Degree
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 17-30
%V 318
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_318_a1/
%G ru
%F TM_2022_318_a1
Ivan V. Arzhantsev; Yulia I. Zaitseva; Kirill V. Shakhmatov. Homogeneous Algebraic Varieties and Transitivity Degree. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 2, Tome 318 (2022), pp. 17-30. http://geodesic.mathdoc.fr/item/TM_2022_318_a1/

[1] Arzhantsev I., “Gale duality and homogeneous toric varieties”, Commun. Algebra, 46:8 (2018), 3539–3552 | DOI | MR | Zbl

[2] Arzhantsev I., “Infinite transitivity and special automorphisms”, Ark. Mat., 56:1 (2018), 1–14 | DOI | MR | Zbl

[3] Arzhantsev I., Derenthal U., Hausen J., Laface A., Cox rings, Cambridge Stud. Adv. Math., 144, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl

[4] Arzhantsev I., Flenner H., Kaliman S., Kutzschebauch F., Zaidenberg M., “Flexible varieties and automorphism groups”, Duke Math. J., 162:4 (2013), 767–823 | DOI | MR | Zbl

[5] Arzhantsev I., Flenner H., Kaliman S., Kutzschebauch F., Zaidenberg M., “Infinite transitivity on affine varieties”, Birational geometry, rational curves, and arithmetic, Simons Symposia, Springer, New York, 2013, 1–13 | MR | Zbl

[6] Arzhantsev I.V., Gaifullin S.A., “Homogeneous toric varieties”, J. Lie Theory, 20:2 (2010), 283–293 | MR | Zbl

[7] I. V. Arzhantsev, M. G. Zaidenberg, and K. G. Kuyumzhiyan, “Flag varieties, toric varieties, and suspensions: Three instances of infinite transitivity”, Sb. Math., 203:7 (2012), 923–949 | DOI | MR | Zbl

[8] Arzhantsev I., Perepechko A., Süß H., “Infinite transitivity on universal torsors”, J. London Math. Soc. Ser. 2, 89:3 (2014), 762–778 | DOI | MR | Zbl

[9] Bazhov I., “On orbits of the automorphism group on a complete toric variety”, Beitr. Algebra Geom., 54:2 (2013), 471–481 | DOI | MR | Zbl

[10] Borel A., “Les bouts des espaces homogènes de groupes de Lie”, Ann. Math. Ser. 2, 58:3 (1953), 443–457 | DOI | MR | Zbl

[11] Brion M., “Epimorphic subgroups of algebraic groups”, Math. Res. Lett., 24:6 (2017), 1649–1665 | DOI | MR | Zbl

[12] Brion M., “Some structure theorems for algebraic groups”, Algebraic groups: structure and actions. 2015 Clifford lectures, Proc. Symp. Pure Math., 94, Amer. Math. Soc., Providence, RI, 2017, 53–126 | DOI | MR | Zbl

[13] Brion M., “Automorphism groups of almost homogeneous varieties”, Facets of algebraic geometry: A collection in honor of William Fulton's 80th birthday, v. 1, LMS Lect. Note Ser., 472, Cambridge Univ. Press, Cambridge, 2022, 54–76 ; arXiv: 1810.09115 [math.AG] | MR | Zbl

[14] Brion M., Samuel P., Uma V., Lectures on the structure of algebraic groups and geometric applications, Hindustan Book Agency, New Dehli, 2013 | MR | Zbl

[15] Cox D.A., “The homogeneous coordinate ring of a toric variety”, J. Algebr. Geom., 4:1 (1995), 17–50 | MR | Zbl

[16] Cox D.A., Little J.B., Schenck H.K., Toric varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl

[17] Dixon J.D., Mortimer B., Permutation groups, Grad. Texts Math., 163, Springer, New York, 1996 | DOI | MR | Zbl

[18] Flenner H., Kaliman S., Zaidenberg M., “A Gromov–Winkelmann type theorem for flexible varieties”, J. Eur. Math. Soc., 18:11 (2016), 2483–2510 | DOI | MR | Zbl

[19] Flenner H., Zaidenberg M., “Locally nilpotent derivations on affine surfaces with a $\mathbb C^*$-action”, Osaka J. Math., 42:4 (2005), 931–974 | MR | Zbl

[20] Fulton W., Introduction to toric varieties, Ann. Math. Stud., 131, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[21] Grosshans F.D., Algebraic homogeneous spaces and invariant theory, Lect. Notes Math., 1673, Springer, Berlin, 1997 | DOI | MR | Zbl

[22] Hausen J., “Equivariant embeddings into smooth toric varieties”, Can. J. Math., 54:3 (2002), 554–570 | DOI | MR | Zbl

[23] Humphreys J.E., Linear algebraic groups, Grad. Texts Math., 21, Springer, New York, 1975 | DOI | MR | Zbl

[24] Jordan C., “Théorèmes sur les groupes primitifs”, J. math. pures appl., 16 (1871), 383–408 | MR

[25] Kleiman S.L., “Toward a numerical theory of ampleness”, Ann. Math. Ser. 2, 84 (1966), 293–344 | DOI | MR | Zbl

[26] Knop F., “Mehrfach transitive Operationen algebraischer Gruppen”, Arch. Math., 41:5 (1983), 438–446 | DOI | MR | Zbl

[27] Knop F., Kraft H., Vust T., “The Picard group of a $G$-variety”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Semin., 13, Birkhäuser, Basel, 1989, 77–87 | MR

[28] Kramer L., “Two-transitive Lie groups”, J. reine angew. Math., 563 (2003), 83–113 | MR | Zbl

[29] D. Mumford, The Red Book of Varieties and Schemes, Lect. Notes Math., 1358, Springer, Berlin, 1999 | DOI | MR | Zbl

[30] Oda T., Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Ergeb. Math. Grenzgeb. 3. Folge, 15, Springer, Berlin, 1988 | MR | Zbl

[31] A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer Ser. Sov. Math., Springer, Berlin, 1990 | DOI | MR | MR | Zbl

[32] V. L. Popov, “Algebraic curves with an infinite automorphism group”, Math. Notes, 23:2 (1978), 102–108 | DOI | MR | MR | Zbl | Zbl

[33] Popov V.L., “On the Makar-Limanov, Derksen invariants, and finite automorphism groups of algebraic varieties”, Affine algebraic geometry: The Russell Festschrift, CRM Proc. Lect. Notes, 54, Amer. Math. Soc., Providence, RI, 2011, 289–311 | DOI | MR | Zbl

[34] Popov V.L., “On infinite dimensional algebraic transformation groups”, Transform. Groups, 19:2 (2014), 549–568 | DOI | MR | Zbl

[35] V. L. Popov and E. B. Vinberg, “Invariant theory”, Algebraic Geometry IV: Linear Algebraic Groups, Invariant Theory, Encycl. Math. Sci., 55, Springer, Berlin, 1994, 123–278

[36] Ramanujam C.P., “A note on automorphism groups of algebraic varieties”, Math. Ann., 156 (1964), 25–33 | DOI | MR | Zbl

[37] I. R. Shafarevich, Basic Algebraic Geometry 1: Varieties in Projective Space, Springer, Berlin, 2013 | MR | MR | Zbl

[38] Timashev D.A., Homogeneous spaces and equivariant embeddings, Encycl. Math. Sci., 138, Springer, Berlin, 2011 | MR | Zbl

[39] Tits J., Sur certaines classes d'espaces homogènes de groupes de Lie, Mém. Cl. Sci. Coll. 8, 29, no. 3, Acad. Roy. Belg., Bruxelles, 1955 | MR

[40] Włodarczyk J., “Embeddings in toric varieties and prevarieties”, J. Algebr. Geom., 2:4 (1993), 705–726 | MR