Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_317_a5, author = {Ivan Yu. Limonchenko and Grigory D. Solomadin}, title = {On the {Homotopy} {Decomposition} for the {Quotient} of a {Moment--Angle} {Complex} and {Its} {Applications}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {132--156}, publisher = {mathdoc}, volume = {317}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a5/} }
TY - JOUR AU - Ivan Yu. Limonchenko AU - Grigory D. Solomadin TI - On the Homotopy Decomposition for the Quotient of a Moment--Angle Complex and Its Applications JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 132 EP - 156 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_317_a5/ LA - ru ID - TM_2022_317_a5 ER -
%0 Journal Article %A Ivan Yu. Limonchenko %A Grigory D. Solomadin %T On the Homotopy Decomposition for the Quotient of a Moment--Angle Complex and Its Applications %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2022 %P 132-156 %V 317 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2022_317_a5/ %G ru %F TM_2022_317_a5
Ivan Yu. Limonchenko; Grigory D. Solomadin. On the Homotopy Decomposition for the Quotient of a Moment--Angle Complex and Its Applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 132-156. http://geodesic.mathdoc.fr/item/TM_2022_317_a5/
[1] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: a method of decomposition for moment–angle complexes, arrangements and related spaces”, Advances in Mathematics, 225:3 (2010), 1634–1668 | MR | Zbl
[2] Bahri A., Bendersky M., Cohen F.R., Gitler S., “A generalization of the Davis–Januszkiewicz construction and applications to toric manifolds and iterated polyhedral products”, Perspectives in Lie theory, Springer INdAM Ser., 19, ed. by F. Callegaro et al., Springer, Cham, 2017, 369–388 | MR | Zbl
[3] Baralić Ð., Grbić J., Limonchenko I., Vučić A., “Toric objects associated with the dodecahedron”, Filomat, 34:7 (2020), 2329–2356 | MR | Zbl
[4] I. V. Baskakov, “Massey triple products in the cohomology of moment–angle complexes”, Russ. Math. Surv., 58:5 (2003), 1039–1041 | MR | Zbl
[5] Bifet E., De Concini C., Procesi C., “Cohomology of regular embeddings”, Adv. Math., 82:1 (1990), 1–34 | MR | Zbl
[6] Bosio F., Meersseman L., “Real quadrics in $\mathbb C^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | MR | Zbl
[7] Bousfield A.K., Kan D.M., Homotopy limits, completions and localizations, Lect. Notes Math., 304, Springer, New York, 1972 | MR | Zbl
[8] V. M. Buchstaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, and S. Park, “Cohomological rigidity of manifolds defined by 3-dimensional polytopes”, Russ. Math. Surv., 72:2 (2017), 199–256 | MR | Zbl
[9] V. M. Buchstaber and I. Yu. Limonchenko, “Massey products, toric topology and combinatorics of polytopes”, Izv. Math., 83:6 (2019), 1081–1136 | MR | Zbl
[10] V. M. Buchstaber and T. E. Panov, “Torus actions and combinatorics of polytopes”, Proc. Steklov Inst. Math., 225 (1999), 87–120 | MR | MR | Zbl
[11] Buchstaber V.M., Panov T.E., Torus actions and their applications in topology and combinatorics, Univ. Lect. Ser., 24, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[12] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl
[13] Buchstaber V.M., Panov T.E., Ray N., “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl
[14] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | MR | Zbl
[15] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | MR | Zbl
[16] Dwyer W.G., Spalinski J., “Homotopy theories and model categories”, Handbook of algebraic topology, ed. by I.M. James, North-Holland, Amsterdam, 1995, 73–126 | MR | Zbl
[17] Farjoun E.D., Cellular spaces, null spaces and homotopy localization, Lect. Notes Math., 1622, Springer, Berlin, 1996 | MR
[18] Fischli S., On toric varieties, Doctoral dissertation, Univ. Bern, Bern, 1992
[19] M. Franz, “The integral cohomology of toric manifolds”, Proc. Steklov Inst. Math., 252 (2006), 53–62 | MR | Zbl
[20] Franz M., “Describing toric varieties and their equivariant cohomology”, Colloq. math., 121:1 (2010), 1–16 | MR | Zbl
[21] Franz M., “The cohomology rings of smooth toric varieties and quotients of moment–angle complexes”, Geom. Topol., 25:4 (2021), 2109–2144 | MR | Zbl
[22] Fu X., Symmetries in toric topology, PhD thesis, Univ. Southampton, Southampton, 2019
[23] Fukukawa Y., Masuda M., “Buchstaber invariants of skeleta of a simplex”, Osaka J. Math., 48:2 (2011), 549–582 | MR | Zbl
[24] J. Grbić and A. Linton, “Lowest-degree triple Massey products in moment–angle complexes”, Russ. Math. Surv., 75:6 (2020), 1159–1161 | MR | Zbl
[25] Grbić J., Linton A., “Non-trivial higher Massey products in moment–angle complexes”, Adv. Math., 387 (2021), 107837 | MR | Zbl
[26] Grbić J., Theriault S., “The homotopy type of the complement of a coordinate subspace arrangement”, Topology, 46:4 (2007), 357–396 | MR | Zbl
[27] Halperin S., “Rational homotopy and torus actions”, Aspects of topology: In memory of H. Dowker, LMS Lect. Note Series, 93, Cambridge Univ. Press, Cambridge, 1985, 293–306 | MR
[28] I. Yu. Limonchenko, “Massey products in cohomology of moment–angle manifolds for 2-truncated cubes”, Russ. Math. Surv., 71:2 (2016), 376–378 | MR | Zbl
[29] Limonchenko I., “Topology of moment–angle manifolds arising from flag nestohedra”, Chin. Ann. Math. Ser. B, 38:6 (2017), 1287–1302 | MR | Zbl
[30] I. Yu. Limonchenko, “On higher Massey products and rational formality for moment–angle manifolds over multiwedges”, Proc. Steklov Inst. Math., 305 (2019), 161–181 | MR | Zbl
[31] I. Yu. Limonchenko, Z. Lü, and T. E. Panov, “Calabi–Yau hypersurfaces and SU-bordism”, Proc. Steklov Inst. Math., 302 (2018), 270–278 | MR | Zbl
[32] I. Yu. Limonchenko and T. E. Panov, “Minimally non-Golod face rings and Massey products”, Usp. Mat. Nauk, 77:4 (2022), 203–204 ; E-print, arXiv: 2201.12779 [math.AT] | MR
[33] I. Yu. Limonchenko, T. E. Panov, and G. S. Chernykh, “$SU$-bordism: Structure results and geometric representatives”, Russ. Math. Surv., 74:3 (2019), 461–524 | MR | Zbl
[34] May J.P., Classifying spaces and fibrations, Mem. AMS, 1, no. 155, Amer. Math. Soc., Providence, RI, 1975 | MR
[35] May J.P., Simplicial objects in algebraic topology, Chicago Lect. Math., Univ. Chicago Press, Chicago, 1992 | MR | Zbl
[36] McCleary J., A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, Cambridge Univ. Press, Cambridge, 2001 | MR
[37] Notbohm D., Ray N., “On Davis–Januszkiewicz homotopy types. I: Formality and rationalisation”, Algebr. Geom. Topol., 5:1 (2005), 31–51 | MR | Zbl
[38] A. L. Onishchik and E. B. Vinberg, Lie Groups and Algebraic Groups, Springer Ser. Sov. Math., Springer, Berlin, 1990 | MR | MR | Zbl
[39] Panov T.E., Ray N., “Categorical aspects of toric topology”, Toric topology: Int. Conf., Osaka, 2006, Contemp. Math., 460, ed. by M. Harada et al., Amer. Math. Soc., Providence, RI, 2008, 293–322 | MR | Zbl
[40] Panov T., Ray N., Vogt R., “Colimits, Stanley–Reisner algebras, and loop spaces”, Categorical decomposition techniques in algebraic topology: Proc. Int. Conf., Isle of Skye, 2001, Prog. Math., 215, Birkhäuser, Basel, 2004, 261–291 | MR | Zbl
[41] Poddar M., Sarkar S., “On quasitoric orbifolds”, Osaka J. Math., 47:4 (2010), 1055–1076 | MR | Zbl
[42] Yu. M. Ustinovskii, “Toral rank conjecture for moment–angle complexes”, Math. Notes, 90:2 (2011), 279–283 | MR | Zbl
[43] Yu L., “On Hochster's formula for a class of quotient spaces of moment–angle complexes”, Osaka J. Math., 56:1 (2019), 33–50 | MR | Zbl
[44] Waner S., “Equivariant homotopy theory and Milnor's theorem”, Trans. Amer. Math. Soc., 258:2 (1980), 351–368 | MR | Zbl
[45] Welker V., Ziegler G.M., Živaljević R.T., “Homotopy colimits—comparison lemmas for combinatorial applications”, J. reine angew. Math., 509 (1999), 117–149 | MR | Zbl