Adams--Hilton Models and Higher Whitehead Brackets for Polyhedral Products
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 107-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct Adams–Hilton models for the polyhedral products of spheres $(\underline {S})^{\mathcal K}$ and Davis–Januszkiewicz spaces $(\mathbb C\mathrm P^\infty )^{\mathcal K}$. We show that in these cases the Adams–Hilton model can be chosen so that it coincides with the cobar construction of the homology coalgebra. We apply the resulting models to the study of iterated higher Whitehead products in $(\mathbb C\mathrm P^\infty )^{\mathcal K}$. Namely, we explicitly construct a chain in the cobar construction that represents the homology class of the Hurewicz image of a Whitehead product.
@article{TM_2022_317_a4,
     author = {Elizaveta G. Zhuravleva},
     title = {Adams--Hilton {Models} and {Higher} {Whitehead} {Brackets} for {Polyhedral} {Products}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {107--131},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a4/}
}
TY  - JOUR
AU  - Elizaveta G. Zhuravleva
TI  - Adams--Hilton Models and Higher Whitehead Brackets for Polyhedral Products
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 107
EP  - 131
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a4/
LA  - ru
ID  - TM_2022_317_a4
ER  - 
%0 Journal Article
%A Elizaveta G. Zhuravleva
%T Adams--Hilton Models and Higher Whitehead Brackets for Polyhedral Products
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 107-131
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a4/
%G ru
%F TM_2022_317_a4
Elizaveta G. Zhuravleva. Adams--Hilton Models and Higher Whitehead Brackets for Polyhedral Products. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 107-131. http://geodesic.mathdoc.fr/item/TM_2022_317_a4/

[1] S. A. Abramyan, “Iterated higher Whitehead products in topology of moment–angle complexes”, Sib. Math. J., 60:2 (2019), 185–196 | DOI | MR | Zbl

[2] S. A. Abramyan and T. E. Panov, “Higher Whitehead products in moment–angle complexes and substitution of simplicial complexes”, Proc. Steklov Inst. Math., 305 (2019), 1–21 | DOI | MR | Zbl

[3] Adams J.F., “On the cobar construction”, Proc. Natl. Acad. Sci. USA, 42:7 (1956), 409–412 | DOI | MR | Zbl

[4] Adams J.F., Hilton P.J., “On the chain algebra of a loop space”, Comment. math. Helv., 30 (1956), 305–330 | DOI | MR | Zbl

[5] Andrews P., Arkowitz M., “Sullivan's minimal models and higher order Whitehead products”, Can. J. Math., 30:5 (1978), 961–982 | DOI | MR | Zbl

[6] Anick D.J., “Hopf algebras up to homotopy”, J. Amer. Math. Soc., 2:3 (1989), 417–453 | DOI | MR | Zbl

[7] Bahri A., Bendersky M., Cohen F.R., Gitler S., “The polyhedral product functor: A method of decomposition for moment–angle complexes, arrangements and related spaces”, Adv. Math., 225:3 (2010), 1634–1668 | DOI | MR | Zbl

[8] A. Bahri, M. Bendersky, F. R. Cohen, and S. Gitler, “On problems concerning moment–angle complexes and polyhedral products”, Trans. Moscow Math. Soc., 74 (2013), 203–216 | DOI | MR | Zbl

[9] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[10] Grbić J., Panov T., Theriault S., Wu J., “The homotopy types of moment–angle complexes for flag complexes”, Trans. Amer. Math. Soc., 368:9 (2016), 6663–6682 | DOI | MR | Zbl

[11] Grbić J., Simmons G., Ilyasova M., Panov T., “One-relator groups and algebras related to polyhedral products”, Proc. R. Soc. Edinb. Sect. A, 152:1 (2022), 128–147 | DOI | MR | Zbl

[12] J. Grbić and S. Theriault, “Homotopy theory in toric topology”, Russ. Math. Surv., 71:2 (2016), 185–251 | DOI | MR | Zbl

[13] Hardie K.A., “Higher Whitehead products”, Q. J. Math. Oxford. Ser. 2, 12 (1961), 241–249 | DOI | MR | Zbl

[14] Notbohm D., Ray N., “On Davis–Januszkiewicz homotopy types. I: Formality and rationalisation”, Algebr. Geom. Topol., 5:1 (2005), 31–51 | DOI | MR | Zbl

[15] Panov T.E., Ray N., “Categorical aspects of toric topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[16] Porter G.J., “Higher order Whitehead products”, Topology, 3:2 (1965), 123–135 | MR | Zbl

[17] Williams F.D., “Higher Samelson products”, J. Pure Appl. Algebra, 2:3 (1972), 249–260 | MR | Zbl