Adams--Hilton Models and Higher Whitehead Brackets for Polyhedral Products
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 107-131
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct Adams–Hilton models for the polyhedral products of spheres $(\underline {S})^{\mathcal K}$ and Davis–Januszkiewicz spaces $(\mathbb C\mathrm P^\infty )^{\mathcal K}$. We show that in these cases the Adams–Hilton model can be chosen so that it coincides with the cobar construction of the homology coalgebra. We apply the resulting models to the study of iterated higher Whitehead products in $(\mathbb C\mathrm P^\infty )^{\mathcal K}$. Namely, we explicitly construct a chain in the cobar construction that represents the homology class of the Hurewicz image of a Whitehead product.
@article{TM_2022_317_a4,
author = {Elizaveta G. Zhuravleva},
title = {Adams--Hilton {Models} and {Higher} {Whitehead} {Brackets} for {Polyhedral} {Products}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {107--131},
publisher = {mathdoc},
volume = {317},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a4/}
}
TY - JOUR AU - Elizaveta G. Zhuravleva TI - Adams--Hilton Models and Higher Whitehead Brackets for Polyhedral Products JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 107 EP - 131 VL - 317 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_317_a4/ LA - ru ID - TM_2022_317_a4 ER -
Elizaveta G. Zhuravleva. Adams--Hilton Models and Higher Whitehead Brackets for Polyhedral Products. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 107-131. http://geodesic.mathdoc.fr/item/TM_2022_317_a4/