Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 64-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any flag simplicial complex $\mathcal K$, we describe the multigraded Poincaré series, the minimal number of relations, and the degrees of these relations in the Pontryagin algebra of the corresponding moment–angle complex $\mathcal Z_{\mathcal K}$. We compute the LS-category of $\mathcal Z_{\mathcal K}$ for flag complexes and give a lower bound in the general case. The key observation is that the Milnor–Moore spectral sequence collapses at the second page for flag $\mathcal K$. We also show that the results of Panov and Ray about the Pontryagin algebras of Davis–Januszkiewicz spaces are valid for arbitrary coefficient rings, and introduce the $(\mathbb Z\times \mathbb Z_{\geq 0}^m)$-grading on the Pontryagin algebras which is similar to the multigrading on the cohomology of $\mathcal Z_{\mathcal K}$.
@article{TM_2022_317_a2,
     author = {F. E. Vylegzhanin},
     title = {Pontryagin {Algebras} and the {LS-Category} of {Moment--Angle} {Complexes} in the {Flag} {Case}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--88},
     publisher = {mathdoc},
     volume = {317},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_317_a2/}
}
TY  - JOUR
AU  - F. E. Vylegzhanin
TI  - Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 64
EP  - 88
VL  - 317
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_317_a2/
LA  - ru
ID  - TM_2022_317_a2
ER  - 
%0 Journal Article
%A F. E. Vylegzhanin
%T Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 64-88
%V 317
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_317_a2/
%G ru
%F TM_2022_317_a2
F. E. Vylegzhanin. Pontryagin Algebras and the LS-Category of Moment--Angle Complexes in the Flag Case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Toric Topology, Group Actions, Geometry, and Combinatorics. Part 1, Tome 317 (2022), pp. 64-88. http://geodesic.mathdoc.fr/item/TM_2022_317_a2/

[1] Adams J.F., “On the cobar construction”, Proc. Natl. Acad. Sci. USA, 42 (1956), 409–412 | DOI | MR | Zbl

[2] A. A. Aizenberg, “Topological applications of Stanley–Reisner rings of simplicial complexes”, Trans. Moscow Math. Soc., 2012 (2012), 37–65 | MR | Zbl

[3] Aluffi P., Algebra: Chapter 0, Grad. Stud. Math., 104, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[4] Beben P., Grbić J., “LS-category of moment–angle manifolds and higher order Massey products”, Forum math., 33:5 (2021), 1179–1205 | DOI | MR | Zbl

[5] Brown K.S., Cohomology of groups, Grad. Texts Math., 87, Springer, New York, 1982 | DOI | MR | Zbl

[6] V. M. Buchstaber and I. Yu. Limonchenko, “Massey products, toric topology and combinatorics of polytopes”, Izv. Math., 83:6 (2019), 1081–1136 | DOI | MR | Zbl

[7] Buchstaber V.M., Panov T.E., Toric topology, Math. Surv. Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[8] Cai Li., Some calculations of the homology of loop spaces of moment–angle complexes using Hall words, Talk at the International Polyhedral Products Seminar (Dec. 16, 2021) http://math.princeton.edu/events/some-calculations-homology-loop-spaces-moment-angle-complexes-using-hall-words-2021-12

[9] Denham G., Suciu A.I., “Moment–angle complexes, monomial ideals and Massey products”, Pure Appl. Math. Q., 3:1 (2007), 25–60 | DOI | MR | Zbl

[10] Dranishnikov A.N., “Boundaries of Coxeter groups and simplicial complexes with given links”, J. Pure Appl. Algebra, 137:2 (1999), 139–151 | DOI | MR | Zbl

[11] Eilenberg S., Ganea T., “On the Lusternik–Schnirelmann category of abstract groups”, Ann. Math. Ser. 2, 65:3 (1957), 517–518 | DOI | MR | Zbl

[12] Fröberg R., “Determination of a class of Poincaré series”, Math. Scand., 37 (1975), 29–39 | DOI | MR | Zbl

[13] Ganea T., “Lusternik–Schnirelmann category and strong category”, Ill. J. Math., 11:3 (1967), 417–427 | MR | Zbl

[14] Ginsburg M., “On the Lusternik–Schnirelmann category”, Ann. Math. Ser. 2, 77:3 (1963), 538–551 | DOI | MR | Zbl

[15] Grbić J., Panov T., Theriault S., Wu J., “The homotopy types of moment–angle complexes for flag complexes”, Trans. Amer. Math. Soc., 368:9 (2016), 6663–6682 | DOI | MR | Zbl

[16] Grbić J., Simmons G., Ilyasova M., Panov T., “One-relator groups and algebras related to polyhedral products”, Proc. R. Soc. Edinb. Sect. A, 152:1 (2022), 128–147 | DOI | MR | Zbl

[17] Löfwall C., “On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra”, Algebra, algebraic topology and their interactions: Proc. Conf., Stockholm, 1983, Lect. Notes Math., 1183, Springer, Berlin, 1986, 291–338 | DOI | MR

[18] McCleary J., A user's guide to spectral sequences, Cambridge Stud. Adv. Math., 58, 2nd ed., Cambridge Univ. Press, Cambridge, 2001 | MR

[19] Milnor J., “Construction of universal bundles. II”, Ann. Math. Ser. 2, 63:3 (1956), 430–436 | DOI | MR | Zbl

[20] Milnor J.W., Moore J.C., “On the structure of Hopf algebras”, Ann. Math. Ser. 2, 81:2 (1965), 211–264 | DOI | MR | Zbl

[21] Panov T.E., Ray N., “Categorical aspects of toric topology”, Toric topology: Proc. Int. Conf., Osaka, 2006, Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[22] Panov T., Theriault S., “The homotopy theory of polyhedral products associated with flag complexes”, Compos. math., 155:1 (2019), 206–228 | DOI | MR | Zbl

[23] T. E. Panov and Ya. A. Veryovkin, “Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups”, Sb. Math., 207:11 (2016), 1582–1600 | DOI | MR | Zbl

[24] Priddy S.B., “Koszul resolutions”, Trans. Amer. Math. Soc., 152 (1970), 39–60 | DOI | MR | Zbl

[25] Swan R.G., “Groups of cohomological dimension one”, J. Algebra, 12:4 (1969), 585–610 | DOI | MR | Zbl

[26] Toomer G.H., “Lusternik–Schnirelmann category and the Moore spectral sequence”, Math. Z., 138 (1974), 123–143 | DOI | MR | Zbl

[27] Ustinovskiy Yu., “On face numbers of flag simplicial complexes”, Discrete Comput. Geom., 60:3 (2018), 688–697 | DOI | MR | Zbl

[28] Wall C.T.C., “Generators and relations for the Steenrod algebra”, Ann. Math. Ser. 2, 72:3 (1960), 429–444 | DOI | MR | Zbl