First Hitting Time of a High Level by a Catalytic Branching Walk
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 105-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a model of a supercritical catalytic branching random walk (CBRW) on the integers $\mathbb {Z}$, the case of light tails of the walk jump is considered, i.e., the Cramér condition is imposed. A limit theorem in the sense of almost sure convergence is proved for the first time of hitting a linearly growing (in time) high level by particles. In the limit, there arises the same constant as in the limit theorem for the maximum of a CBRW.
Keywords: catalytic branching random walk, supercritical regime, Cramér condition, first hitting time.
Mots-clés : propagation front
@article{TM_2022_316_a7,
     author = {E. Vl. Bulinskaya},
     title = {First {Hitting} {Time} of a {High} {Level} by a {Catalytic} {Branching} {Walk}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a7/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - First Hitting Time of a High Level by a Catalytic Branching Walk
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 105
EP  - 112
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a7/
LA  - ru
ID  - TM_2022_316_a7
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T First Hitting Time of a High Level by a Catalytic Branching Walk
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 105-112
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a7/
%G ru
%F TM_2022_316_a7
E. Vl. Bulinskaya. First Hitting Time of a High Level by a Catalytic Branching Walk. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 105-112. http://geodesic.mathdoc.fr/item/TM_2022_316_a7/

[1] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. I. Math., 326:8 (1998), 975–980 | DOI | MR | Zbl

[2] Bocharov S., Wang L., “Branching Brownian motion with spatially homogeneous and point-catalytic branching”, J. Appl. Probab., 56:3 (2019), 891–917 | DOI | MR | Zbl

[3] A. A. Borovkov, Asymptotic Analysis of Random Walks: Light-Tailed Distributions, Encycl. Math. Appl., 176, Cambridge Univ. Press, Cambridge, 2020 | MR | Zbl

[4] A. A. Borovkov and K. A. Borovkov, Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions, Encycl. Math. Appl., 118, Cambridge Univ. Press, Cambridge, 2008 | MR | Zbl

[5] Brémaud P., Markov chains: Gibbs fields, Monte Carlo simulation, and queues, Texts Appl. Math., 31, Springer, New York, 1999 | DOI | MR | Zbl

[6] Bulinskaya E.Vl., “Finiteness of hitting times under taboo”, Stat. Probab. Lett., 85 (2014), 15–19 | DOI | MR | Zbl

[7] E. Vl. Bulinskaya, “Complete classification of catalytic branching processes”, Theory Probab. Appl., 59:4 (2015), 545–566 | DOI | MR | Zbl

[8] E. Vl. Bulinskaya, “Strong and weak convergence of the population size in a supercritical catalytic branching process”, Dokl. Math., 92:3 (2015), 714–718 | DOI | MR | MR | Zbl

[9] Bulinskaya E.Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl

[10] E. Vl. Bulinskaya, “Fluctuations of the propagation front of a catalytic branching walk”, Theory Probab. Appl., 64:4 (2020), 513–534 | DOI | MR | Zbl

[11] Bulinskaya E.Vl., “Catalytic branching random walk with semi-exponential increments”, Math. Popul. Stud., 28:3 (2021), 123–153 | DOI | MR | Zbl

[12] Bulinskaya E.Vl., “Maximum of catalytic branching random walk with regularly varying tails”, J. Theor. Probab., 34:1 (2021), 141–161 | DOI | MR | Zbl

[13] Buraczewski D., Maślanka M., “Large deviation estimates for branching random walks”, ESAIM: Probab. Stat., 23 (2019), 823–840 | DOI | MR

[14] Carmona Ph., Hu Y., “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré. Probab. stat., 50:2 (2014), 327–351 | MR | Zbl

[15] Cox D.R., Renewal theory, J. Wiley Sons, New York, 1962 | MR | Zbl

[16] Dyszewski P., Gantert N., Höfelsauer T., “Large deviations for the maximum of a branching random walk with stretched exponential tails”, Electron. Commun. Probab., 25 (2020), 72 | DOI | MR | Zbl

[17] Y. Hu, V. A. Topchii, and V. A. Vatutin, “Branching random walk in $\mathbf Z^4$ with branching at the origin only”, Theory Probab. Appl., 56:2 (2012), 193–212 | DOI | MR | Zbl

[18] S. A. Molchanov and E. B. Yarovaya, “Branching processes with lattice spatial dynamics and a finite set of particle generation centers”, Dokl. Math., 86:2 (2012), 638–641 | DOI | MR | Zbl

[19] M. V. Platonova and K. S. Ryadovkin, “Branching random walks on $\mathbf Z^d$ with periodic branching sources”, Theory Probab. Appl., 64:2 (2019), 229–248 | DOI | MR | Zbl

[20] Rytova A., Yarovaya E., “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. R. Soc. Edinburgh. Sect. A. Math., 151:3 (2021), 971–992 | DOI | MR | Zbl

[21] Shi Z., Branching random walks: École d'Été de Probabilités de Saint-Flour XLII – 2012, Lect. Notes Math., 2151, Springer, Cham, 2015 | DOI | MR

[22] Vatutin V.A., Vetvyaschiesya protsessy Bellmana–Kharrisa, Lekts. kursy NOTs, 12, MIAN, M., 2009

[23] Vatutin V., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta math. Sin., 23:6 (2007), 997–1012 | DOI | MR | Zbl