First Hitting Time of a High Level by a Catalytic Branching Walk
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 105-112

Voir la notice de l'article provenant de la source Math-Net.Ru

In a model of a supercritical catalytic branching random walk (CBRW) on the integers $\mathbb {Z}$, the case of light tails of the walk jump is considered, i.e., the Cramér condition is imposed. A limit theorem in the sense of almost sure convergence is proved for the first time of hitting a linearly growing (in time) high level by particles. In the limit, there arises the same constant as in the limit theorem for the maximum of a CBRW.
Keywords: catalytic branching random walk, supercritical regime, Cramér condition, first hitting time.
Mots-clés : propagation front
@article{TM_2022_316_a7,
     author = {E. Vl. Bulinskaya},
     title = {First {Hitting} {Time} of a {High} {Level} by a {Catalytic} {Branching} {Walk}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {105--112},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a7/}
}
TY  - JOUR
AU  - E. Vl. Bulinskaya
TI  - First Hitting Time of a High Level by a Catalytic Branching Walk
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 105
EP  - 112
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a7/
LA  - ru
ID  - TM_2022_316_a7
ER  - 
%0 Journal Article
%A E. Vl. Bulinskaya
%T First Hitting Time of a High Level by a Catalytic Branching Walk
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 105-112
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a7/
%G ru
%F TM_2022_316_a7
E. Vl. Bulinskaya. First Hitting Time of a High Level by a Catalytic Branching Walk. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 105-112. http://geodesic.mathdoc.fr/item/TM_2022_316_a7/