Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 79-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the magnitude of fluctuations of the extreme particle in the model of binary branching Brownian motion with a single catalytic point at the origin.
@article{TM_2022_316_a6,
     author = {Sergey S. Bocharov},
     title = {Fluctuations of the {Rightmost} {Particle} in the {Catalytic} {Branching} {Brownian} {Motion}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {79--104},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a6/}
}
TY  - JOUR
AU  - Sergey S. Bocharov
TI  - Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 79
EP  - 104
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a6/
LA  - ru
ID  - TM_2022_316_a6
ER  - 
%0 Journal Article
%A Sergey S. Bocharov
%T Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 79-104
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a6/
%G ru
%F TM_2022_316_a6
Sergey S. Bocharov. Fluctuations of the Rightmost Particle in the Catalytic Branching Brownian Motion. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 79-104. http://geodesic.mathdoc.fr/item/TM_2022_316_a6/

[1] Albeverio S., Bogachev L.V., Yarovaya E.B., “Asymptotics of branching symmetric random walk on the lattice with a single source”, C. r. Acad. sci. Paris. Sér. I. Math., 326:8 (1998), 975–980 | DOI | MR | Zbl

[2] Bocharov S., “Limiting distribution of particles near the frontier in the catalytic branching Brownian motion”, Acta appl. math., 169 (2020), 433–453 | DOI | MR | Zbl

[3] Bocharov S., Harris S.C., “Branching Brownian motion with catalytic branching at the origin”, Acta appl. math., 134 (2014), 201–228 | DOI | MR | Zbl

[4] Bocharov S., Harris S.C., “Limiting distribution of the rightmost particle in catalytic branching Brownian motion”, Electron. Commun. Probab., 21 (2016), 70 | DOI | MR | Zbl

[5] Bulinskaya E.Vl., “Spread of a catalytic branching random walk on a multidimensional lattice”, Stoch. Process. Appl., 128:7 (2018), 2325–2340 | DOI | MR | Zbl

[6] Bulinskaya E.Vl., “Maximum of catalytic branching random walk with regularly varying tails”, J. Theor. Probab., 34:1 (2021), 141–161 | DOI | MR | Zbl

[7] Carmona P., Hu Y., “The spread of a catalytic branching random walk”, Ann. Inst. Henri Poincaré. Probab. stat., 50:2 (2014), 327–351 | MR | Zbl

[8] Dawson D.A., Fleischmann K., “A super-Brownian motion with a single point catalyst”, Stoch. Process. Appl., 49:1 (1994), 3–40 | DOI | MR | Zbl

[9] Engländer J., Fleischmann K., “Extinction properties of super-Brownian motions with additional spatially dependent mass production”, Stoch. Process. Appl., 88:1 (2000), 37–58 | DOI | MR | Zbl

[10] Engländer J., Turaev D., “A scaling limit theorem for a class of superdiffusions”, Ann. Probab., 30:2 (2002), 683–722 | DOI | MR | Zbl

[11] Erickson K.B., “Rate of expansion of an inhomogeneous branching process of Brownian particles”, Z. Wahrscheinlichkeitstheor. verw. Geb., 66 (1984), 129–140 | DOI | MR | Zbl

[12] Fleischmann K., Le Gall J.-F., “A new approach to the single point catalytic super-Brownian motion”, Probab. Theory Relat. Fields, 102:1 (1995), 63–82 | DOI | MR | Zbl

[13] Hu Y., Shi Z., “Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees”, Ann. Probab., 37:2 (2009), 742–789 | MR | Zbl

[14] Lalley S., Sellke T., “Traveling waves in inhomogeneous branching Brownian motions. I”, Ann. Probab., 16:3 (1988), 1051–1062 | DOI | MR | Zbl

[15] Nishimori Y., Shiozawa Y., “Limiting distributions for the maximal displacement of branching Brownian motions”, J. Math. Soc. Japan, 74:1 (2022), 177–216 ; arXiv: 1903.02851 [math.PR] | DOI | MR | Zbl

[16] Ren Y.-X., Song R., Zhang R., “The extremal process of super-Brownian motion”, Stoch. Process. Appl., 137 (2021), 1–34 ; arXiv: 1912.05069 [math.PR] | DOI | MR | Zbl

[17] Roberts M.I., “A simple path to asymptotics for the frontier of a branching Brownian motion”, Ann. Probab., 41:5 (2013), 3518–3541 | DOI | MR | Zbl

[18] Shiozawa Y., “Exponential growth of the numbers of particles for branching symmetric $\alpha $-stable processes”, J. Math. Soc. Japan, 60:1 (2008), 75–116 | DOI | MR | Zbl

[19] Shiozawa Y., “Spread rate of branching Brownian motions”, Acta appl. math., 155 (2018), 113–150 | DOI | MR | Zbl

[20] Vatutin V., Xiong J., “Some limit theorems for a particle system of single point catalytic branching random walks”, Acta math. Sin., Engl. Ser., 23:6 (2007), 997–1012 | DOI | MR | Zbl