Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 64-78

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a symmetric branching random walk in a multi-dimensional lattice with continuous time and Markov branching process at each lattice point. It is assumed that initially at each lattice point there is one particle and in the process of branching any particle can produce an arbitrary number of descendants. For a critical process, under the assumption that the walk is transient, we prove the convergence of the distribution of the particle field to the limit stationary distribution. We show the absence of intermittency in the zone $|x-y| = O(\sqrt {t})$, where $x$ and $y$ are spatial coordinates and $t$ is the time, under the assumption of superexponentially light tails of a random walk and a supercriticality of the branching process at the points of the lattice.
@article{TM_2022_316_a5,
     author = {D. M. Balashova and E. B. Yarovaya},
     title = {Structure of the {Population} of {Particles} for a {Branching} {Random} {Walk} in a {Homogeneous} {Environment}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a5/}
}
TY  - JOUR
AU  - D. M. Balashova
AU  - E. B. Yarovaya
TI  - Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 64
EP  - 78
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a5/
LA  - ru
ID  - TM_2022_316_a5
ER  - 
%0 Journal Article
%A D. M. Balashova
%A E. B. Yarovaya
%T Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 64-78
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a5/
%G ru
%F TM_2022_316_a5
D. M. Balashova; E. B. Yarovaya. Structure of the Population of Particles for a Branching Random Walk in a Homogeneous Environment. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 64-78. http://geodesic.mathdoc.fr/item/TM_2022_316_a5/