Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2022_316_a3, author = {Tianyi Bai and Yueyun Hu}, title = {Capacity of the {Range} of {Branching} {Random} {Walks} in {Low} {Dimensions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {32--46}, publisher = {mathdoc}, volume = {316}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a3/} }
TY - JOUR AU - Tianyi Bai AU - Yueyun Hu TI - Capacity of the Range of Branching Random Walks in Low Dimensions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2022 SP - 32 EP - 46 VL - 316 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2022_316_a3/ LA - ru ID - TM_2022_316_a3 ER -
Tianyi Bai; Yueyun Hu. Capacity of the Range of Branching Random Walks in Low Dimensions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 32-46. http://geodesic.mathdoc.fr/item/TM_2022_316_a3/
[1] Asselah A., Schapira B., Sousi P., “Capacity of the range of random walk on $\mathbb Z^d$”, Trans. Amer. Math. Soc., 370:11 (2018), 7627–7645 | DOI | MR | Zbl
[2] Bai T., Wan Y., “Capacity of the range of tree-indexed random walk”, Ann. Appl. Probab. (to appear)
[3] Csáki E., “On the lower limits of maxima and minima of Wiener process and partial sums”, Z. Wahrscheinlichkeitstheor. verw. Geb., 43 (1978), 205–221 | DOI | MR | Zbl
[4] Duquesne Th., Le Gall J.-F., Random trees, Lévy processes and spatial branching processes, Astérisque, 281, Soc. math. France, Paris, 2002 | MR
[5] Kersting G., Vatutin V., Discrete time branching processes in random environment, J. Wiley Sons, Hoboken, NJ, 2017 | Zbl
[6] Lawler G.F., Limic V., Random walk: A modern introduction, Cambridge Stud. Adv. Math., 123, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[7] Le Gall J.-F., Lin S., “The range of tree-indexed random walk in low dimensions”, Ann. Probab., 43:5 (2015), 2701–2728 | MR | Zbl
[8] Le Gall J.-F., Lin S., “The range of tree-indexed random walk”, J. Inst. Math. Jussieu, 15:2 (2016), 271–317 | DOI | MR | Zbl
[9] Petrov V.V., Limit theorems of probability theory: Sequences of independent random variables, Oxford Stud. Probab., 4, Clarendon Press, Oxford, 1995 | MR | Zbl
[10] Zhu Q., “On the critical branching random walk. III: The critical dimension”, Ann. Inst. Henri Poincaré. Probab. stat., 57:1 (2021), 73–93 | MR | Zbl