Capacity of the Range of Branching Random Walks in Low Dimensions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 32-46

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider a branching random walk $(V_u)_{u\in \mathcal T^{\mathrm{IGW}}}$ in $\mathbb Z^d$ with the genealogy tree $\mathcal T^{\mathrm{IGW}}$ formed by a sequence of i.i.d. critical Galton–Watson trees. Let $R_n$ be the set of points in $\mathbb Z^d$ visited by $(V_u)$ when the index $u$ explores the first $n$ subtrees in $\mathcal T^{\mathrm{IGW}}$. Our main result states that for $d\in \{3,4,5\}$, the capacity of $R_n$ is almost surely equal to $n^{(d-2)/{2}+o(1)}$ as $n\to \infty $.
Keywords: branching random walk, tree-indexed random walk, capacity.
@article{TM_2022_316_a3,
     author = {Tianyi Bai and Yueyun Hu},
     title = {Capacity of the {Range} of {Branching} {Random} {Walks} in {Low} {Dimensions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {32--46},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a3/}
}
TY  - JOUR
AU  - Tianyi Bai
AU  - Yueyun Hu
TI  - Capacity of the Range of Branching Random Walks in Low Dimensions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 32
EP  - 46
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a3/
LA  - ru
ID  - TM_2022_316_a3
ER  - 
%0 Journal Article
%A Tianyi Bai
%A Yueyun Hu
%T Capacity of the Range of Branching Random Walks in Low Dimensions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 32-46
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a3/
%G ru
%F TM_2022_316_a3
Tianyi Bai; Yueyun Hu. Capacity of the Range of Branching Random Walks in Low Dimensions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 32-46. http://geodesic.mathdoc.fr/item/TM_2022_316_a3/