The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 336-354

Voir la notice de l'article provenant de la source Math-Net.Ru

Foss and Zachary (2003) and Foss, Palmowski and Zachary (2005) studied the probability of achieving a receding boundary on a time interval of random length by a random walk with a heavy-tailed jump distribution. They have proposed and developed a new approach that allows one to generalise the results of Asmussen (1998) to the case of arbitrary stopping times and to a wide class of nonlinear boundaries, and to obtain uniform results over all stopping times. In this paper, we consider a class of branching random walks with fading branching and obtain results on the tail asymptotics for the maximum of a branching random walk on a time interval of random (possibly unlimited) length, as well as uniform results within a class of bounded random time intervals.
Keywords: subexponential and strong subexponential distributions, branching random walk, receding boundary, principle of a single big jump.
@article{TM_2022_316_a21,
     author = {P. I. Tesemnivkov and S. G. Foss},
     title = {The {Probability} of {Reaching} a {Receding} {Boundary} by a {Branching} {Random} {Walk} with {Fading} {Branching} and {Heavy-Tailed} {Jump} {Distribution}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {336--354},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a21/}
}
TY  - JOUR
AU  - P. I. Tesemnivkov
AU  - S. G. Foss
TI  - The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 336
EP  - 354
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a21/
LA  - ru
ID  - TM_2022_316_a21
ER  - 
%0 Journal Article
%A P. I. Tesemnivkov
%A S. G. Foss
%T The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 336-354
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a21/
%G ru
%F TM_2022_316_a21
P. I. Tesemnivkov; S. G. Foss. The Probability of Reaching a Receding Boundary by a Branching Random Walk with Fading Branching and Heavy-Tailed Jump Distribution. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 336-354. http://geodesic.mathdoc.fr/item/TM_2022_316_a21/