On the Local Time of a Stopped Random Walk Attaining a High Level
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 11-31

Voir la notice de l'article provenant de la source Math-Net.Ru

An integer-valued random walk $\{S_i,\, i\geq 0\}$ with zero drift and finite variance $\sigma ^2$ stopped at the time $T$ of the first hit of the semiaxis $(-\infty ,0]$ is considered. For the random process defined for a variable $u>0$ as the number of visits of this walk to the state $\lfloor un\rfloor $ and conditioned on the event $\max _{1\leq i\leq T}S_i>n$, a functional limit theorem on its convergence to the local time of the Brownian high jump is proved.
Keywords: conditional Brownian motion, local time, functional limit theorem.
@article{TM_2022_316_a2,
     author = {V. I. Afanasyev},
     title = {On the {Local} {Time} of a {Stopped} {Random} {Walk} {Attaining} a {High} {Level}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {11--31},
     publisher = {mathdoc},
     volume = {316},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2022_316_a2/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - On the Local Time of a Stopped Random Walk Attaining a High Level
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2022
SP  - 11
EP  - 31
VL  - 316
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2022_316_a2/
LA  - ru
ID  - TM_2022_316_a2
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T On the Local Time of a Stopped Random Walk Attaining a High Level
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2022
%P 11-31
%V 316
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2022_316_a2/
%G ru
%F TM_2022_316_a2
V. I. Afanasyev. On the Local Time of a Stopped Random Walk Attaining a High Level. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Branching Processes and Related Topics, Tome 316 (2022), pp. 11-31. http://geodesic.mathdoc.fr/item/TM_2022_316_a2/