Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 271-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a mathematical model of psoriasis treatment defined by a system of three differential equations on a fixed time interval. These equations describe the interaction between the populations of T-lymphocytes, keratinocytes, and dendritic cells, which play a crucial role in the development, course, and treatment of this disease. The model includes a bounded control defining the drug dose to suppress the interaction between T-lymphocytes and keratinocytes. We address the problem of minimizing the concentration of keratinocytes at the final point of a given time interval. The analysis of this optimal control problem is based on the Pontryagin maximum principle. We show that for certain relations between the parameters of the model, the corresponding optimal control may contain a third-order singular arc connected to nonsingular bang–bang arcs of this control. The main attention is paid to possible ways of such connection. Numerical calculations that confirm the obtained analytical results are presented.
@article{TM_2021_315_a19,
     author = {E. N. Khailov and E. V. Grigorieva},
     title = {Connecting a {Third-Order} {Singular} {Arc} with {Nonsingular} {Arcs} of {Optimal} {Control} in a {Minimization} {Problem} for a {Psoriasis} {Treatment} {Model}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {271--283},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a19/}
}
TY  - JOUR
AU  - E. N. Khailov
AU  - E. V. Grigorieva
TI  - Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 271
EP  - 283
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a19/
LA  - ru
ID  - TM_2021_315_a19
ER  - 
%0 Journal Article
%A E. N. Khailov
%A E. V. Grigorieva
%T Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 271-283
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a19/
%G ru
%F TM_2021_315_a19
E. N. Khailov; E. V. Grigorieva. Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 271-283. http://geodesic.mathdoc.fr/item/TM_2021_315_a19/

[1] Bonnans F., Martinon P., Giorgi D., Grélard V., Maindrault S., Tissot O., Liu J., BOCOP 2.0.5 – User guide, E-print, 2017

[2] Gabasov R., Kirillova F.M., Osobye optimalnye upravleniya, Librokom, M., 2013

[3] Grigorieva E., Khailov E., “Optimal strategies for psoriasis treatment”, Math. Comput. Appl., 23:3 (2018), 45 | MR

[4] Grigorieva E.V., Khailov E.N., “Singular and non-singular optimal strategies for psoriasis control model”, Pure Appl. Funct. Anal., 4:2 (2019), 219–246 | MR

[5] Grigorieva E., Khailov E., “Chattering and its approximation in control of psoriasis treatment”, Discrete Contin. Dyn. Syst. Ser. B, 24:5 (2019), 2251–2280 | MR

[6] E. N. Khailov and E. V. Grigorieva, “On a third-order singular arc of optimal control in a minimization problem for a mathematical model of psoriasis treatment”, Proc. Steklov Inst. Math., 304 (2019), 281–291 | DOI | MR

[7] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, J. Wiley Sons, New York, 1967

[8] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964

[9] M. I. Zelikin and V. F. Borisov, “Regimes with increasingly more frequent switchings in optimal control problems”, Proc. Steklov Inst. Math., 197 (1993), 95–186

[10] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994