Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_315_a19, author = {E. N. Khailov and E. V. Grigorieva}, title = {Connecting a {Third-Order} {Singular} {Arc} with {Nonsingular} {Arcs} of {Optimal} {Control} in a {Minimization} {Problem} for a {Psoriasis} {Treatment} {Model}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {271--283}, publisher = {mathdoc}, volume = {315}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a19/} }
TY - JOUR AU - E. N. Khailov AU - E. V. Grigorieva TI - Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 271 EP - 283 VL - 315 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_315_a19/ LA - ru ID - TM_2021_315_a19 ER -
%0 Journal Article %A E. N. Khailov %A E. V. Grigorieva %T Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 271-283 %V 315 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_315_a19/ %G ru %F TM_2021_315_a19
E. N. Khailov; E. V. Grigorieva. Connecting a Third-Order Singular Arc with Nonsingular Arcs of Optimal Control in a Minimization Problem for a Psoriasis Treatment Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 271-283. http://geodesic.mathdoc.fr/item/TM_2021_315_a19/
[1] Bonnans F., Martinon P., Giorgi D., Grélard V., Maindrault S., Tissot O., Liu J., BOCOP 2.0.5 – User guide, E-print, 2017
[2] Gabasov R., Kirillova F.M., Osobye optimalnye upravleniya, Librokom, M., 2013
[3] Grigorieva E., Khailov E., “Optimal strategies for psoriasis treatment”, Math. Comput. Appl., 23:3 (2018), 45 | MR
[4] Grigorieva E.V., Khailov E.N., “Singular and non-singular optimal strategies for psoriasis control model”, Pure Appl. Funct. Anal., 4:2 (2019), 219–246 | MR
[5] Grigorieva E., Khailov E., “Chattering and its approximation in control of psoriasis treatment”, Discrete Contin. Dyn. Syst. Ser. B, 24:5 (2019), 2251–2280 | MR
[6] E. N. Khailov and E. V. Grigorieva, “On a third-order singular arc of optimal control in a minimization problem for a mathematical model of psoriasis treatment”, Proc. Steklov Inst. Math., 304 (2019), 281–291 | DOI | MR
[7] E. B. Lee and L. Markus, Foundations of Optimal Control Theory, J. Wiley Sons, New York, 1967
[8] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Pergamon, Oxford, 1964
[9] M. I. Zelikin and V. F. Borisov, “Regimes with increasingly more frequent switchings in optimal control problems”, Proc. Steklov Inst. Math., 197 (1993), 95–186
[10] Zelikin M.I., Borisov V.F., Theory of chattering control with applications to astronautics, robotics, economics, and engineering, Birkhäuser, Boston, 1994