On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 261-270

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of reachable sets of control systems that are linear in control. For the reachable sets of a certain class of such systems, we estimate the growth of their degree of nonconvexity $\alpha $ over time. As an auxiliary result, we establish a relationship between $\alpha $-sets and weakly convex sets in the sense of Vial.
Keywords: Generalized convex set, weakly convex set, reachable set, control system.
Mots-clés : $\alpha $-set
@article{TM_2021_315_a18,
     author = {V. N. Ushakov and A. A. Ershov and A. R. Matviychuk},
     title = {On {Estimating} the {Degree} of {Nonconvexity} of {Reachable} {Sets} of {Control} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {261--270},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a18/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - A. A. Ershov
AU  - A. R. Matviychuk
TI  - On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 261
EP  - 270
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a18/
LA  - ru
ID  - TM_2021_315_a18
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A A. A. Ershov
%A A. R. Matviychuk
%T On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 261-270
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a18/
%G ru
%F TM_2021_315_a18
V. N. Ushakov; A. A. Ershov; A. R. Matviychuk. On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 261-270. http://geodesic.mathdoc.fr/item/TM_2021_315_a18/