General Implicit Function Theorem for Close Mappings
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 7-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a sufficiently general implicit function theorem for mappings that are close to an original one in the uniform metric of the space of continuous mappings. As a corollary, we derive an important (for applications) result related to perturbations of linear mappings.
Keywords: implicit function, close mappings, metric regularity.
@article{TM_2021_315_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {General {Implicit} {Function} {Theorem} for {Close} {Mappings}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {315},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_315_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - General Implicit Function Theorem for Close Mappings
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 7
EP  - 18
VL  - 315
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_315_a0/
LA  - ru
ID  - TM_2021_315_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T General Implicit Function Theorem for Close Mappings
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 7-18
%V 315
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_315_a0/
%G ru
%F TM_2021_315_a0
E. R. Avakov; G. G. Magaril-Il'yaev. General Implicit Function Theorem for Close Mappings. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Optimal Control and Differential Games, Tome 315 (2021), pp. 7-18. http://geodesic.mathdoc.fr/item/TM_2021_315_a0/

[1] V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control, Consultants Bureau, New York, 1987

[2] A. V. Arutyunov, “Implicit function theorem without a priori assumptions about normality”, Comput. Math. Math. Phys., 46:2 (2006), 195–205 | DOI | MR | MR

[3] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, J. Wiley Sons, New York, 1984

[4] E. R. Avakov, “Theorems on estimates in the neighborhood of a singular point of a mapping”, Math. Notes, 47:5 (1990), 425–432 | DOI | MR | MR

[5] E. R. Avakov, “Stability theorem and extremum conditions for abnormal problems”, Proc. Steklov Inst. Math., 291 (2015), 4–23 | DOI | MR

[6] E. R. Avakov and G. G. Magaril-Il'yaev, “An implicit function theorem for inclusions defined by close mappings”, Math. Notes, 103:3–4 (2018), 507–512 | DOI | MR

[7] J. Dieudonné, Foundations of Modern Analysis, Pure Appl. Math., 10, Academic, New York, 1960

[8] Dontchev A.L., “Bartle–Graves theorem revisited”, Set-Valued Var. Anal., 28:1 (2020), 109–122 | DOI | MR

[9] V. A. Zorich, Mathematical Analysis II, Springer, Berlin, 2016