Bounds of Multiplicative Character Sums over Shifted Primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 71-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an integer $q$, let $\chi $ be a primitive multiplicative character mod $q$. For integer $a$ coprime to $q$, we obtain a bound of the form $\bigl |\sum _{n\le N}\Lambda (n)\chi (n+a)\bigr |\le N/q^\delta $, $N\ge q^{3/4+\varepsilon }$, where $\Lambda (n)$ is the von Mangoldt function. This improves on a series of previous results.
@article{TM_2021_314_a3,
     author = {Bryce Kerr},
     title = {Bounds of {Multiplicative} {Character} {Sums} over {Shifted} {Primes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {71--96},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a3/}
}
TY  - JOUR
AU  - Bryce Kerr
TI  - Bounds of Multiplicative Character Sums over Shifted Primes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 71
EP  - 96
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a3/
LA  - ru
ID  - TM_2021_314_a3
ER  - 
%0 Journal Article
%A Bryce Kerr
%T Bounds of Multiplicative Character Sums over Shifted Primes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 71-96
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a3/
%G ru
%F TM_2021_314_a3
Bryce Kerr. Bounds of Multiplicative Character Sums over Shifted Primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 71-96. http://geodesic.mathdoc.fr/item/TM_2021_314_a3/

[1] Burgess D.A., “On character sums and $L$-series”, Proc. London Math. Soc. Ser. 3, 12 (1962), 193–206 | DOI | MR | Zbl

[2] Burgess D.A., “The character sum estimate with $r=3$”, J. London Math. Soc. Ser. 2, 33 (1986), 219–226 | DOI | MR | Zbl

[3] J. B. Friedlander, K. Gong, and I. E. Shparlinskii, “Character sums over shifted primes”, Math. Notes, 88:3–4 (2010), 585–598 | DOI | MR | Zbl

[4] M. Z. Garaev, “Estimation of Kloosterman sums with primes and its application”, Math. Notes, 88:3–4 (2010), 330–337 | DOI | MR | MR | Zbl

[5] Heath-Brown D.R., “Prime numbers in short intervals and a generalized Vaughan identity”, Can. J. Math., 34 (1982), 1365–1377 | DOI | MR | Zbl

[6] Iwaniec H., Kowalski E., Analytic number theory, Colloq. Publ., 53, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl

[7] A. A. Karatsuba, “Sums of characters over prime numbers”, Math. USSR, Izv., 4:2 (1970), 303–326 | DOI | MR

[8] Rakhmonov Z.Kh., “Ob otsenke summy kharakterov s prostymi chislami”, DAN TadzhSSR, 29:1 (1986), 16–20 | MR | Zbl

[9] Z. Kh. Rakhmonov, “On the distribution of values of Dirichlet characters and their applications”, Proc. Steklov Inst. Math., 207 (1995), 263–272 | MR | Zbl

[10] Z. Kh. Rakhmonov, “Sums of values of nonprincipal characters over a sequence of shifted primes”, Proc. Steklov Inst. Math., 299 (2017), 219–245 | DOI | MR | Zbl

[11] Rakhmonov Z., “Sums of values of nonprincipal characters over shifted primes”, Irregularities in the distribution of prime numbers: From the era of Helmut Maier's matrix method and beyond, Springer, Cham, 2018, 187–217 | DOI | MR | Zbl

[12] Schmidt W.M., Equations over finite fields: An elementary approach, Lect. Notes Math., 536, Springer, Berlin, 1976 | DOI | MR | Zbl

[13] Vinogradov I.M., “Uluchshenie otsenki dlya summy znachenii $\chi (p+k)$”, Izv. AN SSSR. Ser. mat., 17:4 (1953), 285–290 | Zbl