Bounds of Multiplicative Character Sums over Shifted Primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 71-96

Voir la notice de l'article provenant de la source Math-Net.Ru

For an integer $q$, let $\chi $ be a primitive multiplicative character mod $q$. For integer $a$ coprime to $q$, we obtain a bound of the form $\bigl |\sum _{n\le N}\Lambda (n)\chi (n+a)\bigr |\le N/q^\delta $, $N\ge q^{3/4+\varepsilon }$, where $\Lambda (n)$ is the von Mangoldt function. This improves on a series of previous results.
@article{TM_2021_314_a3,
     author = {Bryce Kerr},
     title = {Bounds of {Multiplicative} {Character} {Sums} over {Shifted} {Primes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {71--96},
     publisher = {mathdoc},
     volume = {314},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a3/}
}
TY  - JOUR
AU  - Bryce Kerr
TI  - Bounds of Multiplicative Character Sums over Shifted Primes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 71
EP  - 96
VL  - 314
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_314_a3/
LA  - ru
ID  - TM_2021_314_a3
ER  - 
%0 Journal Article
%A Bryce Kerr
%T Bounds of Multiplicative Character Sums over Shifted Primes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 71-96
%V 314
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_314_a3/
%G ru
%F TM_2021_314_a3
Bryce Kerr. Bounds of Multiplicative Character Sums over Shifted Primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 71-96. http://geodesic.mathdoc.fr/item/TM_2021_314_a3/