Bounds of Multiplicative Character Sums over Shifted Primes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 71-96
Voir la notice de l'article provenant de la source Math-Net.Ru
For an integer $q$, let $\chi $ be a primitive multiplicative character mod $q$. For integer $a$ coprime to $q$, we obtain a bound of the form $\bigl |\sum _{n\le N}\Lambda (n)\chi (n+a)\bigr |\le N/q^\delta $, $N\ge q^{3/4+\varepsilon }$, where $\Lambda (n)$ is the von Mangoldt function. This improves on a series of previous results.
@article{TM_2021_314_a3,
author = {Bryce Kerr},
title = {Bounds of {Multiplicative} {Character} {Sums} over {Shifted} {Primes}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {71--96},
publisher = {mathdoc},
volume = {314},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a3/}
}
Bryce Kerr. Bounds of Multiplicative Character Sums over Shifted Primes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 71-96. http://geodesic.mathdoc.fr/item/TM_2021_314_a3/