Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2021_314_a16, author = {Jozsef Solymosi}, title = {On the {Thue--Vinogradov} {Lemma}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {338--345}, publisher = {mathdoc}, volume = {314}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2021_314_a16/} }
Jozsef Solymosi. On the Thue--Vinogradov Lemma. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and Combinatorial Number Theory, Tome 314 (2021), pp. 338-345. http://geodesic.mathdoc.fr/item/TM_2021_314_a16/
[1] M. Aigner and G. M. Ziegler, “Representing numbers as sums of two squares”, Proofs from THE BOOK, Ch. 4, Springer, Berlin, 2018, 19–26 | DOI | MR
[2] Alon N., “Tools from higher algebra”, Handbook of combinatorics, v. 2, ed. by R.L. Graham, M. Grötschel, L. Lovász, Elsevier, Amsterdam, 1995, 1749–1783 | MR | Zbl
[3] Brauer A., Reynolds R., “On a theorem of Aubry–Thue”, Can. J. Math., 3 (1951), 367–374 | DOI | MR | Zbl
[4] Di Benedetto D., Solymosi J., White E., On the directions determined by a Cartesian product in an affine Galois plane, E-print, 2020, arXiv: 2001.06994 [math.CO]
[5] Hanson B., Petridis G., “Refined estimates concerning sumsets contained in the roots of unity”, Proc. London Math. Soc., 122:3 (2021), 353–358 ; arXiv: 1905.09134 [math.NT] | DOI | MR | Zbl
[6] Nagell T., Introduction to number theory, AMS Chelsea Publ. Ser., 163, AMS Chelsea Publ., Providence, RI, 2001 | MR
[7] Porcelli P., Pall G., “A property of Farey sequences, with applications to $q$th power residues”, Can. J. Math., 3 (1951), 52–53 | DOI | MR | Zbl
[8] Lacunary polynomials over finite fields, North Holland, Amsterdam, 1973 | MR
[9] S. A. Stepanov, “An elementary method in algebraic number theory”, Math. Notes, 24:3 (1978), 728–731 | DOI | MR | Zbl
[10] Szőnyi T., “On the number of directions determined by a set of points in an affine Galois plane”, J. Comb. Theory. Ser. A, 74:1 (1996), 141–146 | DOI | MR
[11] Szőnyi T., “Around Rédei's theorem”, Discrete Math., 208–209 (1999), 557–575 | MR
[12] Thue A., “Et par antydninger til en taltheoretisk methode”, Kra. Vidensk. Selsk. Forh., 7 (1902), 1–21; Selected mathematical papers of Axel Thue, Universitetsforlaget, Oslo, 1977, 57–75 | MR
[13] Vinogradov I.M., “On a general theorem concerning the distribution of the residues and non-residues of powers”, Trans. Amer. Math. Soc., 29 (1927), 209–217 | DOI | MR | Zbl
[14] I. M. Vinogradov, Elements of Number Theory, Dover Publ., New York, 1954 | MR | MR | Zbl