Limits of Inductive Sequences of Toeplitz--Cuntz Algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 67-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider inductive sequences of Toeplitz–Cuntz algebras. The connecting homomorphisms of such a sequence are defined by a finite set of sequences of positive integers. We prove that the inductive limit of such a sequence of Toeplitz–Cuntz algebras is isomorphic to the reduced semigroup $C^*$-algebra constructed for the unitalization of the free product of a finite family of semigroups of positive rational numbers. We show that the limit of the inductive sequence of Toeplitz–Cuntz algebras defined by a finite set of sequences of positive integers is a simple $C^*$-algebra.
@article{TM_2021_313_a6,
     author = {S. A. Grigoryan and R. N. Gumerov and E. V. Lipacheva},
     title = {Limits of {Inductive} {Sequences} of {Toeplitz--Cuntz} {Algebras}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {67--77},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a6/}
}
TY  - JOUR
AU  - S. A. Grigoryan
AU  - R. N. Gumerov
AU  - E. V. Lipacheva
TI  - Limits of Inductive Sequences of Toeplitz--Cuntz Algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 67
EP  - 77
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a6/
LA  - ru
ID  - TM_2021_313_a6
ER  - 
%0 Journal Article
%A S. A. Grigoryan
%A R. N. Gumerov
%A E. V. Lipacheva
%T Limits of Inductive Sequences of Toeplitz--Cuntz Algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 67-77
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a6/
%G ru
%F TM_2021_313_a6
S. A. Grigoryan; R. N. Gumerov; E. V. Lipacheva. Limits of Inductive Sequences of Toeplitz--Cuntz Algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 67-77. http://geodesic.mathdoc.fr/item/TM_2021_313_a6/

[1] Arveson W., Continuous analogues of Fock space, Mem. Amer. Math. Soc., 80, no. 409, Amer. Math. Soc., Providence, RI, 1989 | MR

[2] M. A. Aukhadiev, S. A. Grigoryan, and E. V. Lipacheva, “An operator approach to quantization of semigroups”, Sb. Math., 205:3 (2014), 319–342 | DOI | MR | Zbl

[3] Bratteli O., Jorgensen P.E.T., Price G.L., “Endomorphisms of $\mathcal B(\mathcal H)$”, Quantization, nonlinear partial differential equations, and operator algebra, 1994 John von Neumann Symposium on Quantization and Nonlinear Wave Equations (Cambridge, MA, 1994), Proc. Symp. Pure Math., 59, Amer. Math. Soc., Providence, RI, 1996, 93–138 | DOI | MR | Zbl

[4] Cuntz J., “Simple $C^*$-algebras generated by isometries”, Commun. Math. Phys., 57 (1977), 173–185 | DOI | MR | Zbl

[5] Cuntz J., “$K$-theory for certain $C^*$-algebras”, Ann. Math. Ser. 2, 113:1 (1981), 181–197 | DOI | MR | Zbl

[6] Fowler N.J., “States of Toeplitz–Cuntz algebras”, J. Oper. Theory, 42:1 (1999), 121–144 | MR | Zbl

[7] S. A. Grigoryan, E. V. Lipacheva, and A. S. Sitdikov, “Nets of graded $C^*$-algebras over partially ordered sets”, St. Petersburg Math. J., 30:6 (2019), 901–915 | DOI | MR | Zbl

[8] R. N. Gumerov, “Limit automorphisms of the $C^*$-algebras generated by isometric representations for semigroups of rationals”, Sib. Math. J., 59:1 (2018), 73–84 | DOI | MR | Zbl

[9] Gumerov R.N., “Inductive limits for systems of Toeplitz algebras”, Lobachevskii J. Math., 40:4 (2019), 469–478 | DOI | MR | Zbl

[10] Gumerov R.N., “Inductive sequences of Toeplitz algebras and limit automorphisms”, Lobachevskii J. Math., 41:4 (2020), 637–643 | DOI | MR | Zbl

[11] Gumerov R.N., Lipacheva E.V., “Inductive systems of $C^*$-algebras over posets: A survey”, Lobachevskii J. Math., 41:4 (2020), 644–654 | DOI | MR | Zbl

[12] R. N. Gumerov, E. V. Lipacheva, and T. A. Grigoryan, “On inductive limits for systems of $C^*$-algebras”, Russ. Math., 62:7 (2018), 68–73 | DOI | MR | Zbl

[13] Gumerov R.N., Lipacheva E.V., Grigoryan T.A., “On a topology and limits for inductive systems of $C^*$-algebras over partially ordered sets”, Int. J. Theor. Phys., 60:2 (2021), 499–511 | DOI | MR

[14] Howie J.M., An introduction to semigroup theory, Acad. Press, London, 1976 | MR | Zbl

[15] Laca M., “Endomorphisms of $\mathcal B(\mathcal H)$ and Cuntz algebras”, J. Oper. Theory, 30:1 (1993), 85–108 | MR | Zbl

[16] Laca M., Raeburn I., “Semigroup crossed products and the Toeplitz algebras of nonabelian groups”, J. Funct. Anal., 139:2 (1996), 415–440 | DOI | MR | Zbl

[17] Lipacheva E.V., “Embedding semigroup $C^*$-algebras into inductive limits”, Lobachevskii J. Math., 40:5 (2019), 667–675 | DOI | MR | Zbl

[18] E. V. Lipacheva and K. H. Hovsepyan, “Automorphisms of some subalgebras of the Toeplitz algebra”, Sib. Mat. J., 57:3 (2016), 525–531 | DOI | MR | Zbl

[19] G. J. Murphy, $C^*$-Algebras and Operator Theory, Academic, Boston, 1990 | MR