Properties of Topological Measures on Classes of Subspaces of an Inner Product Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 245-252 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study topological measures on classes of subspaces of an inner product space. The existence of topological measures is discussed, and their relation to measures on orthoprojections from $\mathcal {B}(H)^{\mathrm{pr}}$ is considered, where $H$ is the completion of the inner product space in question. We also find properties of topological measures defined on classes of splitting and (co)complete subspaces of an inner product space.
@article{TM_2021_313_a19,
     author = {V. I. Sukharev and E. A. Turilova},
     title = {Properties of {Topological} {Measures} on {Classes} of {Subspaces} of an {Inner} {Product} {Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {245--252},
     year = {2021},
     volume = {313},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a19/}
}
TY  - JOUR
AU  - V. I. Sukharev
AU  - E. A. Turilova
TI  - Properties of Topological Measures on Classes of Subspaces of an Inner Product Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 245
EP  - 252
VL  - 313
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a19/
LA  - ru
ID  - TM_2021_313_a19
ER  - 
%0 Journal Article
%A V. I. Sukharev
%A E. A. Turilova
%T Properties of Topological Measures on Classes of Subspaces of an Inner Product Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 245-252
%V 313
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a19/
%G ru
%F TM_2021_313_a19
V. I. Sukharev; E. A. Turilova. Properties of Topological Measures on Classes of Subspaces of an Inner Product Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 245-252. http://geodesic.mathdoc.fr/item/TM_2021_313_a19/

[1] Amemiya I., Araki H., “A remark on Piron's paper”, Publ. Res. Inst. Math. Sci. Kyoto Univ. Ser. A, 2 (1966), 423–427 | DOI | MR | Zbl

[2] Dvurečenskij A., “Regular measures and inner product spaces”, Int. J. Theor. Phys., 31:5 (1992), 889–905 | DOI | MR

[3] Dvurečenskij A., Gleason's theorem and its applications, Kluwer, Dordrecht, 1993 | MR | Zbl

[4] Gross H., Keller H.A., “On the definition of Hilbert space”, Manuscr. math., 23 (1977), 67–90 | DOI | MR | Zbl

[5] Gudder S., “Inner product spaces”, Amer. Math. Mon., 81 (1974), 29–36 | DOI | MR | Zbl

[6] Hamhalter J., Quantum measure theory, Kluwer, Dordrecht, 2003 | MR | Zbl

[7] Hamhalter J., Pták P., “A completeness criterion for inner product spaces”, Bull. London Math. Soc., 19 (1987), 259–263 | DOI | MR | Zbl

[8] J. von Neumann, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, 2018 | MR | Zbl

[9] Turilova E., “Measures on classes of subspaces affiliated with a von Neumann algebra”, Int. J. Theor. Phys., 48:11 (2009), 3083–3091 | DOI | MR | Zbl