On Lower Semicontinuity of the Quantum Conditional Mutual Information and Its Corollaries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 219-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the recently established lower semicontinuity of the quantum conditional mutual information implies (in fact, is equivalent to) the lower semicontinuity of the loss of the quantum (conditional) mutual information under local channels considered as a function on the Cartesian product of the set of all states of a composite system and the sets of all local channels (equipped with the strong convergence topology). Some applications of this property are considered. New continuity conditions for the quantum mutual information and for the squashed entanglement in both bipartite and multipartite infinite-dimensional systems are obtained. It is proved, in particular, that the multipartite squashed entanglement of any countably indecomposable separable state with finite marginal entropies is equal to zero. Special continuity properties of the information gain of a quantum measurement with and without quantum side information are established that can be treated as robustness (stability) of these quantities with respect to perturbation of the measurement and the measured state.
@article{TM_2021_313_a18,
     author = {M. E. Shirokov},
     title = {On {Lower} {Semicontinuity} of the {Quantum} {Conditional} {Mutual} {Information} and {Its} {Corollaries}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {219--244},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a18/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On Lower Semicontinuity of the Quantum Conditional Mutual Information and Its Corollaries
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 219
EP  - 244
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a18/
LA  - ru
ID  - TM_2021_313_a18
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On Lower Semicontinuity of the Quantum Conditional Mutual Information and Its Corollaries
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 219-244
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a18/
%G ru
%F TM_2021_313_a18
M. E. Shirokov. On Lower Semicontinuity of the Quantum Conditional Mutual Information and Its Corollaries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 219-244. http://geodesic.mathdoc.fr/item/TM_2021_313_a18/

[1] Avis D., Hayden P., Savov I., “Distributed compression and multiparty squashed entanglement”, J. Phys. A: Math. Theor., 41:11 (2008), 115301 | DOI | MR | Zbl

[2] Berta M., Renes J.M., Wilde M.M., “Identifying the information gain of a quantum measurement”, IEEE Trans. Inf. Theory, 60:12 (2014), 7987–8006 | DOI | MR | Zbl

[3] Buscemi F., Das S., Wilde M.M., “Approximate reversibility in the context of entropy gain, information gain, and complete positivity”, Phys. Rev. A, 93:6 (2016), 062314 | DOI | MR

[4] Buscemi F., Hayashi M., Horodecki M., “Global information balance in quantum measurements”, Phys. Rev. Lett., 100:21 (2008), 210504 | DOI | MR | Zbl

[5] Buscemi F., Horodecki M., “Towards a unified approach to information-disturbance tradeoffs in quantum measurements”, Open Syst. Inf. Dyn., 16:1 (2009), 29–48 | DOI | MR | Zbl

[6] Christandl M., Winter A., ““Squashed entanglement”: An additive entanglement measure”, J. Math. Phys., 45:3 (2004), 829–840 | DOI | MR | Zbl

[7] Davis N., Shirokov M.E., Wilde M.M., “Energy-constrained two-way assisted private and quantum capacities of quantum channels”, Phys. Rev. A, 97:6 (2018), 062310 | DOI | MR

[8] Dell'Antonio G.F., “On the limits of sequences of normal states”, Commun. Pure Appl. Math., 20:2 (1967), 413–429 | DOI | MR | Zbl

[9] Devetak I., Yard J., “Exact cost of redistributing multipartite quantum states”, Phys. Rev. Lett., 100:23 (2008), 230501 | DOI | MR

[10] Eisert J., Simon C., Plenio M.B., “On the quantification of entanglement in infinite-dimensional quantum systems”, J. Phys. A: Math. Gen., 35:17 (2002), 3911–3923 | DOI | MR | Zbl

[11] Fawzi O., Renner R., “Quantum conditional mutual information and approximate Markov chains”, Commun. Math. Phys., 340:2 (2015), 575–611 | DOI | MR | Zbl

[12] Groenewold H.J., “A problem of information gain by quantal measurements”, Int. J. Theor. Phys., 4:5 (1971), 327–338 | DOI

[13] Hayden P., Jozsa R., Petz D., Winter A., “Structure of states which satisfy strong subadditivity of quantum entropy with equality”, Commun. Math. Phys., 246:2 (2004), 359–374 | DOI | MR | Zbl

[14] Herbut F., “On mutual information in multipartite quantum states and equality in strong subadditivity of entropy”, J. Phys. A: Math. Gen., 37:10 (2004), 3535–3542 | DOI | MR | Zbl

[15] Holevo A.S., Statistical structure of quantum theory, Lect. Notes Phys. New Ser.: Monogr., 67, Springer, Berlin, 2001 | DOI | MR

[16] Holevo A.S., Quantum systems, channels, information: A mathematical introduction, De Gruyter Stud. Math. Phys., 16, De Gruyter, Berlin, 2012 | MR | Zbl

[17] Horodecki R., Horodecki P., Horodecki M., Horodecki K., “Quantum entanglement”, Rev. Mod. Phys., 81:2 (2009), 865–942 | DOI | MR | Zbl

[18] A. A. Kuznetsova, “Conditional entropy for infinite-dimensional quantum systems”, Theory Probab. Appl., 55:4 (2011), 709–717 | DOI | MR | Zbl

[19] Leung D., Smith G., “Continuity of quantum channel capacities”, Commun. Math. Phys., 292:1 (2009), 201–215 | DOI | MR | Zbl

[20] Lieb E.H., Ruskai M.B., “Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys., 14:12 (1973), 1938–1941 | DOI | MR

[21] Lindblad G., “An entropy inequality for quantum measurements”, Commun. Math. Phys., 28:3 (1972), 245–249 | DOI | MR

[22] Lindblad G., “Entropy, information and quantum measurements”, Commun. Math. Phys., 33:4 (1973), 305–322 | DOI | MR

[23] Lindblad G., “Expectations and entropy inequalities for finite quantum systems”, Commun. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[24] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[25] Ozawa M., “On information gain by quantum measurements of continuous observables”, J. Math. Phys., 27:3 (1986), 759–763 | DOI | MR

[26] Plenio M.B., Virmani S., “An introduction to entanglement measures”, Quantum Inf. Comput., 7:1–2 (2007), 1–51 | MR | Zbl

[27] Shirokov M.E., “Entropy reduction of quantum measurements”, J. Math. Phys., 52:5 (2011), 052202 | DOI | MR | Zbl

[28] M. E. Shirokov, “Measures of correlations in infinite-dimensional quantum systems”, Sb. Math., 207:5 (2016), 724–768 | DOI | MR | MR | Zbl

[29] Shirokov M.E., “Squashed entanglement in infinite dimensions”, J. Math. Phys., 57:3 (2016), 032203 | DOI | MR | Zbl

[30] Shirokov M.E., “Uniform finite-dimensional approximation of basic capacities of energy-constrained channels”, Quant. Inf. Process., 17:12 (2018), 322 | DOI | MR | Zbl

[31] Shirokov M.E., “Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy”, J. Phys. A: Math. Theor., 52:1 (2019), 014001 | DOI | MR | Zbl

[32] Shirokov M.E., “Strong convergence of quantum channels: Continuity of the Stinespring dilation and discontinuity of the unitary dilation”, J. Math. Phys., 61:8 (2020), 082204 | DOI | MR | Zbl

[33] M. E. Shirokov and A. S. Holevo, “On approximation of infinite-dimensional quantum channels”, Probl. Inf. Transm., 44:2 (2008), 73–90 | DOI | MR | Zbl

[34] Sutter D., Fawzi O., Renner R., “Universal recovery map for approximate Markov chains”, Proc. R. Soc. London A, 472:2186 (2016), 20150623 | MR | Zbl

[35] Tucci R.R., Entanglement of distillation and conditional mutual information, E-print, 2002, arXiv: quant-ph/0202144

[36] Wehrl A., “General properties of entropy”, Rev. Mod. Phys., 50:2 (1978), 221–260 | DOI | MR

[37] Wilde M.M., Quantum information theory, Cambridge Univ. Press, Cambridge, 2013 | MR | Zbl

[38] Wilde M.M., “Multipartite quantum correlations and local recoverability”, Proc. R. Soc. London A, 471:2177 (2015), 20140941 | MR | Zbl

[39] Wilde M.M., Hayden P., Buscemi F., Hsieh M.-H., “The information-theoretic costs of simulating quantum measurements”, J. Phys. A: Math. Theor., 45:45 (2012), 453001 | DOI | MR | Zbl

[40] Winter A., ““Extrinsic” and “intrinsic” data in quantum measurements: Asymptotic convex decomposition of positive operator valued measures”, Commun. Math. Phys., 244:1 (2004), 157–185 | DOI | MR | Zbl

[41] Yang D., Horodecki K., Horodecki M., Horodecki P., Oppenheim J., Song W., “Squashed entanglement for multipartite states and entanglement measures based on the mixed convex roof”, IEEE Trans. Inf. Theory., 55:7 (2009), 3375–3387 | DOI | MR | Zbl

[42] Zhang L., “Conditional mutual information and commutator”, Int. J. Theor. Phys., 52:6 (2013), 2112–2117 | DOI | MR | Zbl