Quantum Markov Chains on Comb Graphs: Ising Model
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 192-207

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct quantum Markov chains (QMCs) over comb graphs. As an application of this construction, we prove the existence of a disordered phase for Ising type models (within the QMC scheme) over comb graphs. Moreover, we also establish that the associated QMC has the clustering property with respect to translations of the graph. We stress that this paper is the first one where a nontrivial example of QMCs over irregular graphs is given.
Mots-clés : quantum Markov chain, comb graph
Keywords: Ising model, clustering.
@article{TM_2021_313_a16,
     author = {Farrukh Mukhamedov and Abdessatar Souissi and Tarek Hamdi},
     title = {Quantum {Markov} {Chains} on {Comb} {Graphs:} {Ising} {Model}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {192--207},
     publisher = {mathdoc},
     volume = {313},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_313_a16/}
}
TY  - JOUR
AU  - Farrukh Mukhamedov
AU  - Abdessatar Souissi
AU  - Tarek Hamdi
TI  - Quantum Markov Chains on Comb Graphs: Ising Model
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 192
EP  - 207
VL  - 313
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_313_a16/
LA  - ru
ID  - TM_2021_313_a16
ER  - 
%0 Journal Article
%A Farrukh Mukhamedov
%A Abdessatar Souissi
%A Tarek Hamdi
%T Quantum Markov Chains on Comb Graphs: Ising Model
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 192-207
%V 313
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_313_a16/
%G ru
%F TM_2021_313_a16
Farrukh Mukhamedov; Abdessatar Souissi; Tarek Hamdi. Quantum Markov Chains on Comb Graphs: Ising Model. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematics of Quantum Technologies, Tome 313 (2021), pp. 192-207. http://geodesic.mathdoc.fr/item/TM_2021_313_a16/