Optimal Calder\'on Spaces for Generalized Bessel Potentials
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 43-81

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the properties of spaces with generalized smoothness, such as Calderón spaces, that include the classical Nikolskii–Besov spaces and many of their generalizations, and describe differential properties of generalized Bessel potentials that include classical Bessel potentials and Sobolev spaces. The kernels of potentials may have non-power singularities at the origin. Using order-sharp estimates for the moduli of continuity of potentials, we establish criteria for the embeddings of potentials into Calderón spaces and describe the optimal spaces for such embeddings.
@article{TM_2021_312_a2,
     author = {Elza G. Bakhtigareeva and Mikhail L. Goldman and Dorothee D. Haroske},
     title = {Optimal {Calder\'on} {Spaces} for {Generalized} {Bessel} {Potentials}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {43--81},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a2/}
}
TY  - JOUR
AU  - Elza G. Bakhtigareeva
AU  - Mikhail L. Goldman
AU  - Dorothee D. Haroske
TI  - Optimal Calder\'on Spaces for Generalized Bessel Potentials
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 43
EP  - 81
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a2/
LA  - ru
ID  - TM_2021_312_a2
ER  - 
%0 Journal Article
%A Elza G. Bakhtigareeva
%A Mikhail L. Goldman
%A Dorothee D. Haroske
%T Optimal Calder\'on Spaces for Generalized Bessel Potentials
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 43-81
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a2/
%G ru
%F TM_2021_312_a2
Elza G. Bakhtigareeva; Mikhail L. Goldman; Dorothee D. Haroske. Optimal Calder\'on Spaces for Generalized Bessel Potentials. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 43-81. http://geodesic.mathdoc.fr/item/TM_2021_312_a2/