Spline Wavelet Decomposition in Weighted Function Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 313-337
Voir la notice de l'article provenant de la source Math-Net.Ru
We present Battle–Lemarié wavelet systems of natural orders. Our main result is a decomposition theorem in Besov and Triebel–Lizorkin spaces with local Muckenhoupt weights, which is formulated in terms of bases generated by systems of such a type. The Battle–Lemarié wavelets are splines and suit very well the study of integration operators.
Mots-clés :
Besov space
Keywords: Triebel–Lizorkin space, local Muckenhoupt weight, Battle–Lemarié wavelet system, $B$-spline, decomposition theorem.
Keywords: Triebel–Lizorkin space, local Muckenhoupt weight, Battle–Lemarié wavelet system, $B$-spline, decomposition theorem.
@article{TM_2021_312_a19,
author = {E. P. Ushakova},
title = {Spline {Wavelet} {Decomposition} in {Weighted} {Function} {Spaces}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {313--337},
publisher = {mathdoc},
volume = {312},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a19/}
}
E. P. Ushakova. Spline Wavelet Decomposition in Weighted Function Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 313-337. http://geodesic.mathdoc.fr/item/TM_2021_312_a19/