Spline Wavelet Decomposition in Weighted Function Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 313-337

Voir la notice de l'article provenant de la source Math-Net.Ru

We present Battle–Lemarié wavelet systems of natural orders. Our main result is a decomposition theorem in Besov and Triebel–Lizorkin spaces with local Muckenhoupt weights, which is formulated in terms of bases generated by systems of such a type. The Battle–Lemarié wavelets are splines and suit very well the study of integration operators.
Mots-clés : Besov space
Keywords: Triebel–Lizorkin space, local Muckenhoupt weight, Battle–Lemarié wavelet system, $B$-spline, decomposition theorem.
@article{TM_2021_312_a19,
     author = {E. P. Ushakova},
     title = {Spline {Wavelet} {Decomposition} in {Weighted} {Function} {Spaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {313--337},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a19/}
}
TY  - JOUR
AU  - E. P. Ushakova
TI  - Spline Wavelet Decomposition in Weighted Function Spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 313
EP  - 337
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a19/
LA  - ru
ID  - TM_2021_312_a19
ER  - 
%0 Journal Article
%A E. P. Ushakova
%T Spline Wavelet Decomposition in Weighted Function Spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 313-337
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a19/
%G ru
%F TM_2021_312_a19
E. P. Ushakova. Spline Wavelet Decomposition in Weighted Function Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 313-337. http://geodesic.mathdoc.fr/item/TM_2021_312_a19/