Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 224-235

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the decay orders of the Kolmogorov widths of some Besov classes related to $W^1_1$ (the behavior of the widths for the class $W^1_1$ remains unknown): $d_n(B^1_{1,\theta }[0,1],L_q[0,1])\asymp n^{-1/2}\log ^{\max \{1/2,1-1/\theta \}}n$ for $2$ and $1\le \theta \le \infty $. The proof relies on the lower bound for the width of a product of octahedra in a special norm (maximum of two weighted $\ell _{q_i}$ norms). This bound generalizes B. S. Kashin's theorem on the widths of octahedra in $\ell _q$.
@article{TM_2021_312_a12,
     author = {Yuri V. Malykhin},
     title = {Kolmogorov {Widths} of the {Besov} {Classes} $B^1_{1,\theta }$ and {Products} of {Octahedra}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {224--235},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a12/}
}
TY  - JOUR
AU  - Yuri V. Malykhin
TI  - Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 224
EP  - 235
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a12/
LA  - ru
ID  - TM_2021_312_a12
ER  - 
%0 Journal Article
%A Yuri V. Malykhin
%T Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 224-235
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a12/
%G ru
%F TM_2021_312_a12
Yuri V. Malykhin. Kolmogorov Widths of the Besov Classes $B^1_{1,\theta }$ and Products of Octahedra. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 224-235. http://geodesic.mathdoc.fr/item/TM_2021_312_a12/