On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 203-215
Voir la notice de l'article provenant de la source Math-Net.Ru
We obtain boundedness criteria in terms of Muckenhoupt weights for the Hardy–Littlewood maximal operator and Riesz transforms in weighted grand Morrey spaces $M^{p),q,\varphi }_w$. We also consider some structural properties of the spaces $M^{p),q,\varphi }_w$. The spaces are defined, generally speaking, on spaces of homogeneous type. The results are new even in the case of a special function $\varphi $.
@article{TM_2021_312_a10,
author = {V. M. Kokilashvili and A. N. Meskhi},
title = {On the {Boundedness} of {Integral} {Operators} in {Weighted} {Grand} {Morrey} {Spaces}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {203--215},
publisher = {mathdoc},
volume = {312},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a10/}
}
TY - JOUR AU - V. M. Kokilashvili AU - A. N. Meskhi TI - On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2021 SP - 203 EP - 215 VL - 312 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2021_312_a10/ LA - ru ID - TM_2021_312_a10 ER -
%0 Journal Article %A V. M. Kokilashvili %A A. N. Meskhi %T On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2021 %P 203-215 %V 312 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2021_312_a10/ %G ru %F TM_2021_312_a10
V. M. Kokilashvili; A. N. Meskhi. On the Boundedness of Integral Operators in Weighted Grand Morrey Spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 203-215. http://geodesic.mathdoc.fr/item/TM_2021_312_a10/