Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 7-21

Voir la notice de l'article provenant de la source Math-Net.Ru

For nonlinear mappings acting in Banach spaces, we examine inverse and implicit function theorems under various smoothness assumptions. For various regularity (normality) conditions imposed on such mappings, we prove that the corresponding equations have solutions under any sufficiently small (in the norm) completely continuous perturbations. A priori estimates for these solutions are obtained.
@article{TM_2021_312_a0,
     author = {A. V. Arutyunov and S. E. Zhukovskiy},
     title = {Stable {Solvability} of {Nonlinear} {Equations} under {Completely} {Continuous} {Perturbations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--21},
     publisher = {mathdoc},
     volume = {312},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2021_312_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - S. E. Zhukovskiy
TI  - Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2021
SP  - 7
EP  - 21
VL  - 312
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2021_312_a0/
LA  - ru
ID  - TM_2021_312_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A S. E. Zhukovskiy
%T Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2021
%P 7-21
%V 312
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2021_312_a0/
%G ru
%F TM_2021_312_a0
A. V. Arutyunov; S. E. Zhukovskiy. Stable Solvability of Nonlinear Equations under Completely Continuous Perturbations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function Spaces, Approximation Theory, and Related Problems of Analysis, Tome 312 (2021), pp. 7-21. http://geodesic.mathdoc.fr/item/TM_2021_312_a0/