Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a9, author = {N. G. Kruzhilin}, title = {Holomorphic {Maps} of {Levi-Degenerate} {Tube} {Hypersurfaces} in $\mathbb C^3$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {183--193}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a9/} }
TY - JOUR AU - N. G. Kruzhilin TI - Holomorphic Maps of Levi-Degenerate Tube Hypersurfaces in $\mathbb C^3$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 183 EP - 193 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a9/ LA - ru ID - TM_2020_311_a9 ER -
N. G. Kruzhilin. Holomorphic Maps of Levi-Degenerate Tube Hypersurfaces in $\mathbb C^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 183-193. http://geodesic.mathdoc.fr/item/TM_2020_311_a9/
[1] Chern S.S., Moser J.K., “Real hypersurfaces in complex manifolds”, Acta math., 133 (1974), 219–271 | DOI | MR
[2] Fels G., Kaup W., “Classification of Levi degenerate homogeneous CR-manifolds in dimension 5”, Acta math., 201:1 (2008), 1–82 | DOI | MR | Zbl
[3] Isaev A., “On the CR-curvature of Levi degenerate tube hypersurfaces”, Methods Appl. Anal., 23:4 (2016), 317–328 | MR | Zbl
[4] Isaev A., Zaitsev D., “Reduction of five-dimensional uniformly Levi degenerate CR structures to absolute parallelisms”, J. Geom. Anal., 23:3 (2013), 1571–1605 | DOI | MR | Zbl
[5] Kaup W., Zaitsev D., “On local CR-transformations of Levi-degenerate group orbits in compact Hermitian symmetric spaces”, J. Eur. Math. Soc., 8:3 (2006), 465–490 | DOI | MR | Zbl
[6] Klingen H., “Diskontinuierliche Gruppen in symmetrischen Räumen. I”, Math. Ann., 129 (1955), 345–369 | DOI | MR | Zbl
[7] Kolář M., Kossovskiy I., A complete normal form for everywhere Levi-degenerate hypersurfaces in $\mathbb C^3$, E-print, 2019, arXiv: 1905.05629 [math.CV]
[8] N. K. Kruzhilin, “On a local holomorphic version of the fundamental theorem of projective geometry”, Russ. Math. Surv., 74:6 (2019), 1123–1125 | DOI | MR | Zbl
[9] Medori C., Spiro A., “The equivalence problem for five-dimensional Levi degenerate CR manifolds”, Int. Math. Res. Not., 2014:20 (2014), 5602–5647 | DOI | MR | Zbl
[10] Merker J., Pocchiola S., “Explicit absolute parallelism for 2-nondegenerate real hypersurfaces $M^5\subset \mathbb C^3$ of constant Levi rank 1”, J. Geom. Anal., 30:3 (2020), 2689–2730, 3233–3242 | DOI | MR | Zbl
[11] Mok N., Yeung S.K., “Geometric realizations of uniformization of conjugates of Hermitian locally symmetric manifolds”, Complex analysis and geometry, ed. by V. Ancona, A. Silva, Plenum Press, New York, 1993, 253–270 | DOI | MR | Zbl
[12] Pocchiola S., Explicit absolute parallelism for 2-nondegenerate real hypersurfaces $M^5\in \mathbb C^3$ of constant Levi rank 1, E-print, 2013, arXiv: 1312.6400 [math.CV]
[13] Extrinsic Geometry of Convex Surfaces, Transl. Math. Monogr., 35, Am. Math. Soc., Providence, RI, 1973 | Zbl
[14] Porter C., Zelenko I., Absolute parallelism for 2-nondegenerate CR structures via bigraded Tanaka prolongation, E-print, 2019, arXiv: 1704.03999v5 [math.DG]
[15] Shiffman B., “Synthetic projective geometry and Poincaré's theorem on automorphisms of the ball”, Enseign. math. Sér. 2, 41:3–4 (1995), 201–215 | MR | Zbl
[16] Tanaka N., “On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables”, J. Math. Soc. Japan, 14:4 (1962), 397–429 | DOI | MR | Zbl