Holomorphic Maps of Levi-Degenerate Tube Hypersurfaces in $\mathbb C^3$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 183-193

Voir la notice de l'article provenant de la source Math-Net.Ru

Locally biholomorphic maps between 2-nondegenerate smooth real tube hypersurfaces in $\mathbb C^3$ with Levi form of rank $1$ are described. It is shown that, except for hypersurfaces that are locally equivalent to the boundary of the future tube, such maps must be affine. The proof uses the local holomorphic version of the fundamental theorem of projective geometry which was earlier proved by the author.
Mots-clés : tube hypersurface
Keywords: holomorphic map, Levi form, complex line.
@article{TM_2020_311_a9,
     author = {N. G. Kruzhilin},
     title = {Holomorphic {Maps} of {Levi-Degenerate} {Tube} {Hypersurfaces} in $\mathbb C^3$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {183--193},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a9/}
}
TY  - JOUR
AU  - N. G. Kruzhilin
TI  - Holomorphic Maps of Levi-Degenerate Tube Hypersurfaces in $\mathbb C^3$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 183
EP  - 193
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a9/
LA  - ru
ID  - TM_2020_311_a9
ER  - 
%0 Journal Article
%A N. G. Kruzhilin
%T Holomorphic Maps of Levi-Degenerate Tube Hypersurfaces in $\mathbb C^3$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 183-193
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a9/
%G ru
%F TM_2020_311_a9
N. G. Kruzhilin. Holomorphic Maps of Levi-Degenerate Tube Hypersurfaces in $\mathbb C^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 183-193. http://geodesic.mathdoc.fr/item/TM_2020_311_a9/