Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 164-182.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a finite orthogonal system of uniformly bounded functions, we establish the existence of sufficiently dense subsystems with the lacunarity property and a good norm estimate for the maximal partial sum operator.
@article{TM_2020_311_a8,
     author = {B. S. Kashin and I. V. Limonova},
     title = {Weakly {Lacunary} {Orthogonal} {Systems} and {Properties} of the {Maximal} {Partial} {Sum} {Operator} for {Subsystems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {164--182},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a8/}
}
TY  - JOUR
AU  - B. S. Kashin
AU  - I. V. Limonova
TI  - Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 164
EP  - 182
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a8/
LA  - ru
ID  - TM_2020_311_a8
ER  - 
%0 Journal Article
%A B. S. Kashin
%A I. V. Limonova
%T Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 164-182
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a8/
%G ru
%F TM_2020_311_a8
B. S. Kashin; I. V. Limonova. Weakly Lacunary Orthogonal Systems and Properties of the Maximal Partial Sum Operator for Subsystems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 164-182. http://geodesic.mathdoc.fr/item/TM_2020_311_a8/

[1] T. O. Balykbaev, “On a class of lacunary orthonormal systems”, Sov. Math., Dokl., 33 (1986), 267–269 | MR | Zbl

[2] T. O. Balykbaev, On a class of lacunary orthonormal systems, Cand. Sci. (Phys.–Math.) Dissertation, Moscow State Univ., Moscow, 1986 | MR

[3] Banach S., “Sur les séries lacunaires”, Bull. Int. Acad. polon. sci. A, 1933, no. 4–8, 149–154

[4] Bourgain J., “Bounded orthogonal systems and the $\Lambda (p)$-set problem”, Acta math., 162:3–4 (1989), 227–245 | DOI | MR | Zbl

[5] Bourgain J., “On Kolmogorov's rearrangement problem for orthogonal systems and Garsia's conjecture”, Geometric aspects of functional analysis, Isr. Semin., GAFA 1987–88, Lect. Notes Math., 1376, Springer, Berlin, 1989, 209–250 | DOI | MR

[6] Guédon O., Mendelson S., Pajor A., Tomczak-Jaegermann N., “Subspaces and orthogonal decompositions generated by bounded orthogonal systems”, Positivity, 11:2 (2007), 269–283 | DOI | MR | Zbl

[7] S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, Monogr. Mat., 6, Chelsea Publ., New York, 1951 | Zbl

[8] B. S. Kashin and I. V. Limonova, “Selecting a dense weakly lacunary subsystem in a bounded orthonormal system”, Russ. Math. Surv., 74:5 (2019), 956–958 | DOI | MR | Zbl

[9] Orthogonal Series, Transl. Math. Monogr., 75, Am. Math. Soc., Providence, RI, 1989 | MR | Zbl