Trace Class Toeplitz Operators with Singular Symbols
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 241-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide sufficient conditions for Toeplitz operators with distributional symbols acting on the Bergman space on the unit disk to be trace class. The Berezin transform of distributions, introduced in the paper, yields a formula for the trace. Several instructive examples are also given.
Keywords: Bergman space, Toeplitz operators
Mots-clés : distributional symbol.
@article{TM_2020_311_a13,
     author = {Grigori V. Rozenblum and Nikolai L. Vasilevski},
     title = {Trace {Class} {Toeplitz} {Operators} with {Singular} {Symbols}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--249},
     publisher = {mathdoc},
     volume = {311},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a13/}
}
TY  - JOUR
AU  - Grigori V. Rozenblum
AU  - Nikolai L. Vasilevski
TI  - Trace Class Toeplitz Operators with Singular Symbols
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 241
EP  - 249
VL  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_311_a13/
LA  - ru
ID  - TM_2020_311_a13
ER  - 
%0 Journal Article
%A Grigori V. Rozenblum
%A Nikolai L. Vasilevski
%T Trace Class Toeplitz Operators with Singular Symbols
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 241-249
%V 311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_311_a13/
%G ru
%F TM_2020_311_a13
Grigori V. Rozenblum; Nikolai L. Vasilevski. Trace Class Toeplitz Operators with Singular Symbols. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 241-249. http://geodesic.mathdoc.fr/item/TM_2020_311_a13/

[1] Alexandrov A., Rozenblum G., “Finite rank Toeplitz operators: Some extensions of D. Luecking's theorem”, J. Funct. Anal., 256:7 (2009), 2291–2303 | DOI | MR | Zbl

[2] El-Fallah O., Mahzouli H., Marrhich I., Naqos H., “Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces”, J. Funct. Anal., 270:12 (2016), 4614–4630 | DOI | MR | Zbl

[3] Luecking D.H., “Trace ideal criteria for Toeplitz operators”, J. Funct. Anal., 73:2 (1987), 345–368 | DOI | MR | Zbl

[4] O. G. Parfenov, “Asymptotics of singular numbers of imbedding operators for certain classes of analytic functions”, Math. USSR, Sb., 43:4 (1982), 563–571 | DOI | MR | MR | Zbl | Zbl

[5] Peláez J.Á., Rättyä J., Sierra K., “Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights”, J. Geom. Anal., 28:1 (2018), 656–687 | DOI | MR | Zbl

[6] Perälä A., Taskinen J., Virtanen J., “Toeplitz operators with distributional symbols on Bergman spaces”, Proc. Edinb. Math. Soc. Ser. 2, 54:2 (2011), 505–514 | DOI | MR | Zbl

[7] Rozenblum G., Vasilevski N., “Toeplitz operators defined by sesquilinear forms: Fock space case”, J. Funct. Anal., 267:11 (2014), 4399–4430 | DOI | MR | Zbl

[8] Rozenblum G., Vasilevski N., “Toeplitz operators defined by sesquilinear forms: Bergman space case”, J. Math. Sci., 213:4 (2016), 582–609 | DOI | MR | Zbl

[9] Zhu K., Operator theory in function spaces, Math. Surv. Monogr., 138, 2nd ed., Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl