Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_311_a13, author = {Grigori V. Rozenblum and Nikolai L. Vasilevski}, title = {Trace {Class} {Toeplitz} {Operators} with {Singular} {Symbols}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {241--249}, publisher = {mathdoc}, volume = {311}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_311_a13/} }
TY - JOUR AU - Grigori V. Rozenblum AU - Nikolai L. Vasilevski TI - Trace Class Toeplitz Operators with Singular Symbols JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 241 EP - 249 VL - 311 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_311_a13/ LA - ru ID - TM_2020_311_a13 ER -
Grigori V. Rozenblum; Nikolai L. Vasilevski. Trace Class Toeplitz Operators with Singular Symbols. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analysis and mathematical physics, Tome 311 (2020), pp. 241-249. http://geodesic.mathdoc.fr/item/TM_2020_311_a13/
[1] Alexandrov A., Rozenblum G., “Finite rank Toeplitz operators: Some extensions of D. Luecking's theorem”, J. Funct. Anal., 256:7 (2009), 2291–2303 | DOI | MR | Zbl
[2] El-Fallah O., Mahzouli H., Marrhich I., Naqos H., “Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces”, J. Funct. Anal., 270:12 (2016), 4614–4630 | DOI | MR | Zbl
[3] Luecking D.H., “Trace ideal criteria for Toeplitz operators”, J. Funct. Anal., 73:2 (1987), 345–368 | DOI | MR | Zbl
[4] O. G. Parfenov, “Asymptotics of singular numbers of imbedding operators for certain classes of analytic functions”, Math. USSR, Sb., 43:4 (1982), 563–571 | DOI | MR | MR | Zbl | Zbl
[5] Peláez J.Á., Rättyä J., Sierra K., “Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights”, J. Geom. Anal., 28:1 (2018), 656–687 | DOI | MR | Zbl
[6] Perälä A., Taskinen J., Virtanen J., “Toeplitz operators with distributional symbols on Bergman spaces”, Proc. Edinb. Math. Soc. Ser. 2, 54:2 (2011), 505–514 | DOI | MR | Zbl
[7] Rozenblum G., Vasilevski N., “Toeplitz operators defined by sesquilinear forms: Fock space case”, J. Funct. Anal., 267:11 (2014), 4399–4430 | DOI | MR | Zbl
[8] Rozenblum G., Vasilevski N., “Toeplitz operators defined by sesquilinear forms: Bergman space case”, J. Math. Sci., 213:4 (2016), 582–609 | DOI | MR | Zbl
[9] Zhu K., Operator theory in function spaces, Math. Surv. Monogr., 138, 2nd ed., Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl