On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 143-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of first integrals that are polynomial in momenta is considered for the equations of motion of a particle on a two-dimensional Euclidean torus in a force field with even potential. Of special interest is the case when the spectrum of the potential lies on four straight lines such that the angle between any two of them is a multiple of $\pi /4$. With the help of perturbation theory, it is proved that there are no additional polynomial integrals of any degree that are independent of the Hamiltonian function.
@article{TM_2020_310_a9,
     author = {N. V. Denisova},
     title = {On {Momentum-Polynomial} {Integrals} of a {Reversible} {Hamiltonian} {System} of a {Certain} {Form}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a9/}
}
TY  - JOUR
AU  - N. V. Denisova
TI  - On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 143
EP  - 148
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a9/
LA  - ru
ID  - TM_2020_310_a9
ER  - 
%0 Journal Article
%A N. V. Denisova
%T On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 143-148
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a9/
%G ru
%F TM_2020_310_a9
N. V. Denisova. On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 143-148. http://geodesic.mathdoc.fr/item/TM_2020_310_a9/