On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 143-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of first integrals that are polynomial in momenta is considered for the equations of motion of a particle on a two-dimensional Euclidean torus in a force field with even potential. Of special interest is the case when the spectrum of the potential lies on four straight lines such that the angle between any two of them is a multiple of $\pi /4$. With the help of perturbation theory, it is proved that there are no additional polynomial integrals of any degree that are independent of the Hamiltonian function.
@article{TM_2020_310_a9,
     author = {N. V. Denisova},
     title = {On {Momentum-Polynomial} {Integrals} of a {Reversible} {Hamiltonian} {System} of a {Certain} {Form}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {143--148},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a9/}
}
TY  - JOUR
AU  - N. V. Denisova
TI  - On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 143
EP  - 148
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a9/
LA  - ru
ID  - TM_2020_310_a9
ER  - 
%0 Journal Article
%A N. V. Denisova
%T On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 143-148
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a9/
%G ru
%F TM_2020_310_a9
N. V. Denisova. On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 143-148. http://geodesic.mathdoc.fr/item/TM_2020_310_a9/

[1] G. D. Birkhoff, Dynamical Systems, Colloq. Publ., 9, Am. Math. Soc., New York, 1927 | DOI | MR | Zbl

[2] S. V. Bolotin and V. V. Kozlov, “Topological approach to the generalized $n$-centre problem”, Russ. Math. Surv., 72:3 (2017), 451–478 | DOI | MR | Zbl

[3] A. V. Bolsinov, V. V. Kozlov, and A. T. Fomenko, “The Maupertuis principle and geodesic flows on the sphere arising from integrable cases in the dynamics of a rigid body”, Russ. Math. Surv., 50:3 (1995), 473–501 | DOI | MR | Zbl

[4] Bozis G., “Compatibility conditions for a non-quadratic integral of motion”, Celestial Mech., 28:4 (1982), 367–380 | DOI | MR | Zbl

[5] M. L. Byalyi, “First integrals that are polynomial in momenta for a mechanical system on a two-dimensional torus”, Funct. Anal. Appl., 21:4 (1987), 310–312 | DOI | MR | Zbl

[6] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. II, Les congruences et les équations linéaires aux dérivées partielles. Des lignes tracées sur les surfaces, Gauthier-Villars et Fils, Paris, 1889 | MR

[7] N. V. Denisova and V. V. Kozlov, “Polynomial integrals of reversible mechanical systems with a two-dimensional torus as the configuration space”, Sb. Math., 191:2 (2000), 189–208 | DOI | MR | Zbl

[8] N. V. Denisova, V. V. Kozlov, and D. V. Treschev, “Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space”, Izv. Math., 76:5 (2012), 907–921 | DOI | MR | Zbl

[9] V. V. Kozlov, “Topological obstructions to the integrability of natural mechanical systems”, Sov. Math., Dokl., 20 (1979), 1413–1415 | MR | Zbl

[10] Kozlov V.V., “Problemata nova, ad quorum solutionem mathematici invitantur”, Dynamical systems in classical mechanics, AMS Transl. Ser. 2; Adv. Math. Sci., 168, Amer. Math. Soc., Providence, RI, 1995, 239–254 | MR

[11] V. V. Kozlov, Symmetries, Topology and Resonances in Hamiltonian Mechanics, Udmurt. Gos. Univ., Izhevsk, 1995 | MR | Zbl

[12] Springer, Berlin, 1996 | MR | Zbl

[13] Kozlov V.V., “Polynomial in momenta invariants of Hamilton's equations, divergent series and generalized functions”, Nonlinearity, 26:3 (2013), 745–756 | DOI | MR | Zbl

[14] V. V. Kozlov and N. V. Denisova, “Polynomial integrals of geodesic flows on a two-dimensional torus”, Sb. Math., 83:2 (1995), 469–481 | DOI | MR | Zbl

[15] V. V. Kozlov and D. V. Treshchev, “On the integrability of Hamiltonian systems with toral position space”, Math. USSR, Sb., 63:1 (1989), 121–139 | DOI | MR | Zbl

[16] V. V. Kozlov and D. V. Treshchev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics”, Sb. Math., 207:10 (2016), 1435–1449 | DOI | MR | Zbl

[17] A. E. Mironov, “On polynomial integrals of a mechanical system on a two-dimensional torus”, Izv. Math., 74:4 (2010), 805–817 | DOI | MR | Zbl