On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 143-148
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of first integrals that are polynomial in momenta is considered for the equations of motion of a particle on a two-dimensional Euclidean torus in a force field with even potential. Of special interest is the case when the spectrum of the potential lies on four straight lines such that the angle between any two of them is a multiple of $\pi /4$. With the help of perturbation theory, it is proved that there are no additional polynomial integrals of any degree that are independent of the Hamiltonian function.
@article{TM_2020_310_a9,
author = {N. V. Denisova},
title = {On {Momentum-Polynomial} {Integrals} of a {Reversible} {Hamiltonian} {System} of a {Certain} {Form}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {143--148},
publisher = {mathdoc},
volume = {310},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a9/}
}
TY - JOUR AU - N. V. Denisova TI - On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 143 EP - 148 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a9/ LA - ru ID - TM_2020_310_a9 ER -
N. V. Denisova. On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 143-148. http://geodesic.mathdoc.fr/item/TM_2020_310_a9/