On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 40-77

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonstationary Prandtl-type system of equations that describes the behavior of a boundary layer of a viscous incompressible fluid in the modification of O. A. Ladyzhenskaya. We prove an existence and uniqueness theorem both in Cartesian coordinates and in terms of the Crocco variables.
@article{TM_2020_310_a3,
     author = {R. R. Bulatova and V. N. Samokhin and G. A. Chechkin},
     title = {On an {Unsteady} {Boundary} {Layer} of a {Viscous} {Rheologically} {Complex} {Fluid}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {40--77},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a3/}
}
TY  - JOUR
AU  - R. R. Bulatova
AU  - V. N. Samokhin
AU  - G. A. Chechkin
TI  - On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 40
EP  - 77
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a3/
LA  - ru
ID  - TM_2020_310_a3
ER  - 
%0 Journal Article
%A R. R. Bulatova
%A V. N. Samokhin
%A G. A. Chechkin
%T On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 40-77
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a3/
%G ru
%F TM_2020_310_a3
R. R. Bulatova; V. N. Samokhin; G. A. Chechkin. On an Unsteady Boundary Layer of a Viscous Rheologically Complex Fluid. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 40-77. http://geodesic.mathdoc.fr/item/TM_2020_310_a3/