Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_310_a21, author = {A. I. Shafarevich and O. A. Shchegortsova}, title = {Semiclassical {Asymptotics} of the {Solution} to the {Cauchy} {Problem} for the {Schr\"odinger} {Equation} with a {Delta} {Potential} {Localized} on a {Codimension} 1 {Surface}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {322--331}, publisher = {mathdoc}, volume = {310}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a21/} }
TY - JOUR AU - A. I. Shafarevich AU - O. A. Shchegortsova TI - Semiclassical Asymptotics of the Solution to the Cauchy Problem for the Schr\"odinger Equation with a Delta Potential Localized on a Codimension 1 Surface JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 322 EP - 331 VL - 310 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_310_a21/ LA - ru ID - TM_2020_310_a21 ER -
%0 Journal Article %A A. I. Shafarevich %A O. A. Shchegortsova %T Semiclassical Asymptotics of the Solution to the Cauchy Problem for the Schr\"odinger Equation with a Delta Potential Localized on a Codimension 1 Surface %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 322-331 %V 310 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_310_a21/ %G ru %F TM_2020_310_a21
A. I. Shafarevich; O. A. Shchegortsova. Semiclassical Asymptotics of the Solution to the Cauchy Problem for the Schr\"odinger Equation with a Delta Potential Localized on a Codimension 1 Surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 322-331. http://geodesic.mathdoc.fr/item/TM_2020_310_a21/
[1] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl
[2] Albeverio S., Kurasov P., Singular perturbations of differential operators: Solvable Schrödinger type operators, LMS Lect. Note Ser., 271, Cambridge Univ. Press, Cambridge, 2000 | MR
[3] F. A. Berezin and L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Sov. Math., Dokl., 2 (1961), 372–375 | MR | Zbl
[4] T. A. Filatova and A. I. Shafarevich, “Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere”, Theor. Math. Phys., 164:2 (2010), 1064–1080 | DOI | MR | Zbl
[5] Kronig R. de L., Penney W.G., “Quantum mechanics of electrons in crystal lattices”, Proc. R. Soc. London A, 130 (1931), 499–513 | DOI
[6] V. P. Maslov, Asymptotic Methods and Perturbation Theory, Nauka, Moscow, 1988 (in Russian) | MR | Zbl
[7] V. P. Maslov and M. V. Fedoryuk, Quasi-classical Approximation for Equations of Quantum Mechanics, Nauka, Moscow, 1976 | MR | Zbl
[8] Semi-classical Approximation in Quantum Mechanics, Math. Phys. Appl. Math., 7, Reidel, Dordrecht, 1981 | MR | Zbl
[9] T. Ratiu, T. A. Filatova, and A. I. Shafarevich, “Noncompact Lagrangian manifolds corresponding to the spectral series of the Schrödinger operator with delta-potential on a surface of revolution”, Dokl. Math., 86:2 (2012), 694–696 | DOI | MR | Zbl
[10] Ratiu T.S., Suleimanova A.A., Shafarevich A.I., “Spectral series of the Schrödinger operator with delta-potential on a three-dimensional spherically symmetric manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335 | DOI | MR | Zbl