Semiclassical Asymptotics of the Solution to the Cauchy Problem for the Schr\"odinger Equation with a Delta Potential Localized on a Codimension 1 Surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 322-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the semiclassical asymptotics of the solution to the Cauchy problem for the Schrödinger equation with a delta potential localized on a codimension $1$ surface. The initial condition represents a rapidly oscillating wave packet. We show that the asymptotics is expressed in terms of the Maslov canonical operator on a pair of Lagrangian manifolds in the extended phase space; the form of the delta potential defines a mapping between these manifolds that describes the reflection and scattering of the wave packet.
@article{TM_2020_310_a21,
     author = {A. I. Shafarevich and O. A. Shchegortsova},
     title = {Semiclassical {Asymptotics} of the {Solution} to the {Cauchy} {Problem} for the {Schr\"odinger} {Equation} with a {Delta} {Potential} {Localized} on a {Codimension} 1 {Surface}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {322--331},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a21/}
}
TY  - JOUR
AU  - A. I. Shafarevich
AU  - O. A. Shchegortsova
TI  - Semiclassical Asymptotics of the Solution to the Cauchy Problem for the Schr\"odinger Equation with a Delta Potential Localized on a Codimension 1 Surface
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 322
EP  - 331
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a21/
LA  - ru
ID  - TM_2020_310_a21
ER  - 
%0 Journal Article
%A A. I. Shafarevich
%A O. A. Shchegortsova
%T Semiclassical Asymptotics of the Solution to the Cauchy Problem for the Schr\"odinger Equation with a Delta Potential Localized on a Codimension 1 Surface
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 322-331
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a21/
%G ru
%F TM_2020_310_a21
A. I. Shafarevich; O. A. Shchegortsova. Semiclassical Asymptotics of the Solution to the Cauchy Problem for the Schr\"odinger Equation with a Delta Potential Localized on a Codimension 1 Surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 322-331. http://geodesic.mathdoc.fr/item/TM_2020_310_a21/

[1] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, AMS Chelsea Publ., Providence, RI, 2005 | MR | Zbl

[2] Albeverio S., Kurasov P., Singular perturbations of differential operators: Solvable Schrödinger type operators, LMS Lect. Note Ser., 271, Cambridge Univ. Press, Cambridge, 2000 | MR

[3] F. A. Berezin and L. D. Faddeev, “A remark on Schrödinger's equation with a singular potential”, Sov. Math., Dokl., 2 (1961), 372–375 | MR | Zbl

[4] T. A. Filatova and A. I. Shafarevich, “Semiclassical spectral series of the Schrödinger operator with a delta potential on a straight line and on a sphere”, Theor. Math. Phys., 164:2 (2010), 1064–1080 | DOI | MR | Zbl

[5] Kronig R. de L., Penney W.G., “Quantum mechanics of electrons in crystal lattices”, Proc. R. Soc. London A, 130 (1931), 499–513 | DOI

[6] V. P. Maslov, Asymptotic Methods and Perturbation Theory, Nauka, Moscow, 1988 (in Russian) | MR | Zbl

[7] V. P. Maslov and M. V. Fedoryuk, Quasi-classical Approximation for Equations of Quantum Mechanics, Nauka, Moscow, 1976 | MR | Zbl

[8] Semi-classical Approximation in Quantum Mechanics, Math. Phys. Appl. Math., 7, Reidel, Dordrecht, 1981 | MR | Zbl

[9] T. Ratiu, T. A. Filatova, and A. I. Shafarevich, “Noncompact Lagrangian manifolds corresponding to the spectral series of the Schrödinger operator with delta-potential on a surface of revolution”, Dokl. Math., 86:2 (2012), 694–696 | DOI | MR | Zbl

[10] Ratiu T.S., Suleimanova A.A., Shafarevich A.I., “Spectral series of the Schrödinger operator with delta-potential on a three-dimensional spherically symmetric manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335 | DOI | MR | Zbl