Approximations of Nonlinear Integral Functionals of Entropy Type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 7-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We obtain generalizations and strengthenings of the results of V. V. Kozlov and D. V. Treschev on approximations of nonlinear integral functionals of entropy type on measure spaces.
Keywords: integral functional, entropy, conditional expectation.
@article{TM_2020_310_a0,
     author = {V. I. Bogachev},
     title = {Approximations of {Nonlinear} {Integral} {Functionals} of {Entropy} {Type}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--18},
     year = {2020},
     volume = {310},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Approximations of Nonlinear Integral Functionals of Entropy Type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 7
EP  - 18
VL  - 310
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a0/
LA  - ru
ID  - TM_2020_310_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Approximations of Nonlinear Integral Functionals of Entropy Type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 7-18
%V 310
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a0/
%G ru
%F TM_2020_310_a0
V. I. Bogachev. Approximations of Nonlinear Integral Functionals of Entropy Type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 7-18. http://geodesic.mathdoc.fr/item/TM_2020_310_a0/

[1] Bogachev V.I., Measure theory, v. 1, 2, Springer, New York, 2007 | MR | Zbl

[2] Bogachev V.I., Weak convergence of measures, Math. Surv. Monogr., 234, Amer. Math. Soc., Providence, RI, 2018 | DOI | MR | Zbl

[3] V. I. Bogachev, “Non-uniform Kozlov–Treschev averagings in the ergodic theorem”, Russ. Math. Surv., 75:3 (2020), 393–425 | DOI | MR | Zbl

[4] V. I. Bogachev and A. A. Lipchyus, “Approximation of nonlinear integral functionals”, Dokl. Math., 80:2 (2009), 749–754 | DOI | MR | MR | Zbl

[5] Bogachev V.I., Smolyanov O.G., Real and functional analysis, Moscow Lect., 4, Springer, Cham, 2020 | DOI | Zbl

[6] Braides A., Defranceschi A., Homogenization of multiple integrals, Oxford Lect. Ser. Math. Appl., 12, Clarendon Press, Oxford, 1998 | MR | Zbl

[7] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Stud., 105, Princeton Univ. Press, Princeton, 1983 | MR | Zbl

[8] Giaquinta M., Hildebrandt S., Calculus of variations, v. I, Grundl. Math. Wiss., 310, The Lagrangian formalism, Springer, Berlin, 1996 | MR | Zbl

[9] Giaquinta M., Hildebrandt S., Calculus of variations. II: The Hamiltonian formalism, Grundl. Math. Wiss., 311, Springer, Berlin, 1996 | MR

[10] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russ. Math. Surv., 63:4 (2008), 691–726 | DOI | MR | Zbl

[11] Kozlov V.V., “Coarsening in ergodic theory”, Russ. J. Math. Phys., 22:2 (2015), 184–187 | DOI | MR | Zbl

[12] V. V. Kozlov and D. V. Treshchev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics”, Theor. Math. Phys., 151:1 (2007), 539–555 | DOI | MR | Zbl

[13] M. A. Krasnosel'ski{ĭ} and Ya. B. Ruticki{ĭ}, Convex Functions and Orlicz Spaces, Fizmatgiz, Moscow, 1958 | MR | Zbl

[14] Noordhoff, Groningen, 1961 | MR | Zbl

[15] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Nauka, Moscow, 1966 | MR | Zbl | Zbl

[16] Noordhoff, Leiden, 1976 | MR | Zbl | Zbl

[17] V. L. Levin, Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics, Nauka, Moscow, 1985 (in Russian) | MR | Zbl

[18] Piftankin G., Treschev D., “Coarse-grained entropy in dynamical systems”, Regul. Chaotic Dyn., 15:4–5 (2010), 575–597 | DOI | MR | Zbl

[19] Rao M.M., Ren Z.D., Theory of Orlicz spaces, Pure Appl. Math., 146, M. Dekker, New York, 1991 | MR | Zbl

[20] Väth M., “A general theorem on continuity and compactness of the Uryson operator”, J. Integral Eqns. Appl., 8:3 (1996), 379–389 | DOI | MR | Zbl

[21] Väth M., “Approximation, complete continuity, and uniform measurability of Uryson operators on general measure spaces”, Nonlinear Anal. Theory Methods Appl., 33:7 (1998), 715–728 | DOI | MR | Zbl