Approximations of Nonlinear Integral Functionals of Entropy Type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 7-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain generalizations and strengthenings of the results of V. V. Kozlov and D. V. Treschev on approximations of nonlinear integral functionals of entropy type on measure spaces.
Keywords: integral functional, entropy, conditional expectation.
@article{TM_2020_310_a0,
     author = {V. I. Bogachev},
     title = {Approximations of {Nonlinear} {Integral} {Functionals} of {Entropy} {Type}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {310},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_310_a0/}
}
TY  - JOUR
AU  - V. I. Bogachev
TI  - Approximations of Nonlinear Integral Functionals of Entropy Type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 7
EP  - 18
VL  - 310
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_310_a0/
LA  - ru
ID  - TM_2020_310_a0
ER  - 
%0 Journal Article
%A V. I. Bogachev
%T Approximations of Nonlinear Integral Functionals of Entropy Type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 7-18
%V 310
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_310_a0/
%G ru
%F TM_2020_310_a0
V. I. Bogachev. Approximations of Nonlinear Integral Functionals of Entropy Type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected issues of mathematics and mechanics, Tome 310 (2020), pp. 7-18. http://geodesic.mathdoc.fr/item/TM_2020_310_a0/

[1] Bogachev V.I., Measure theory, v. 1, 2, Springer, New York, 2007 | MR | Zbl

[2] Bogachev V.I., Weak convergence of measures, Math. Surv. Monogr., 234, Amer. Math. Soc., Providence, RI, 2018 | DOI | MR | Zbl

[3] V. I. Bogachev, “Non-uniform Kozlov–Treschev averagings in the ergodic theorem”, Russ. Math. Surv., 75:3 (2020), 393–425 | DOI | MR | Zbl

[4] V. I. Bogachev and A. A. Lipchyus, “Approximation of nonlinear integral functionals”, Dokl. Math., 80:2 (2009), 749–754 | DOI | MR | MR | Zbl

[5] Bogachev V.I., Smolyanov O.G., Real and functional analysis, Moscow Lect., 4, Springer, Cham, 2020 | DOI | Zbl

[6] Braides A., Defranceschi A., Homogenization of multiple integrals, Oxford Lect. Ser. Math. Appl., 12, Clarendon Press, Oxford, 1998 | MR | Zbl

[7] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Stud., 105, Princeton Univ. Press, Princeton, 1983 | MR | Zbl

[8] Giaquinta M., Hildebrandt S., Calculus of variations, v. I, Grundl. Math. Wiss., 310, The Lagrangian formalism, Springer, Berlin, 1996 | MR | Zbl

[9] Giaquinta M., Hildebrandt S., Calculus of variations. II: The Hamiltonian formalism, Grundl. Math. Wiss., 311, Springer, Berlin, 1996 | MR

[10] V. V. Kozlov, “The generalized Vlasov kinetic equation”, Russ. Math. Surv., 63:4 (2008), 691–726 | DOI | MR | Zbl

[11] Kozlov V.V., “Coarsening in ergodic theory”, Russ. J. Math. Phys., 22:2 (2015), 184–187 | DOI | MR | Zbl

[12] V. V. Kozlov and D. V. Treshchev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics”, Theor. Math. Phys., 151:1 (2007), 539–555 | DOI | MR | Zbl

[13] M. A. Krasnosel'ski{ĭ} and Ya. B. Ruticki{ĭ}, Convex Functions and Orlicz Spaces, Fizmatgiz, Moscow, 1958 | MR | Zbl

[14] Noordhoff, Groningen, 1961 | MR | Zbl

[15] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Nauka, Moscow, 1966 | MR | Zbl | Zbl

[16] Noordhoff, Leiden, 1976 | MR | Zbl | Zbl

[17] V. L. Levin, Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics, Nauka, Moscow, 1985 (in Russian) | MR | Zbl

[18] Piftankin G., Treschev D., “Coarse-grained entropy in dynamical systems”, Regul. Chaotic Dyn., 15:4–5 (2010), 575–597 | DOI | MR | Zbl

[19] Rao M.M., Ren Z.D., Theory of Orlicz spaces, Pure Appl. Math., 146, M. Dekker, New York, 1991 | MR | Zbl

[20] Väth M., “A general theorem on continuity and compactness of the Uryson operator”, J. Integral Eqns. Appl., 8:3 (1996), 379–389 | DOI | MR | Zbl

[21] Väth M., “Approximation, complete continuity, and uniform measurability of Uryson operators on general measure spaces”, Nonlinear Anal. Theory Methods Appl., 33:7 (1998), 715–728 | DOI | MR | Zbl