Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 290-303
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the properties of the Moyal multiplier algebras for the generalized Gelfand–Shilov spaces $S^{b_n}_{a_k}$. We prove that these algebras contain Palamodov spaces of type $\mathscr E$, and establish continuity properties of the operators with Weyl symbols in this class. Analogous results are obtained for the projective version of the spaces of type $S$ and are extended to the multiplier algebras for various translation-invariant star products.
Mots-clés :
deformation quantization, multiplier algebra
Keywords: Weyl symbols, Moyal product, Gelfand–Shilov spaces.
Keywords: Weyl symbols, Moyal product, Gelfand–Shilov spaces.
@article{TM_2020_309_a19,
author = {M. A. Soloviev},
title = {Characterization of the {Moyal} {Multiplier} {Algebras} for the {Generalized} {Spaces} of {Type} $S$},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {290--303},
publisher = {mathdoc},
volume = {309},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a19/}
}
TY - JOUR AU - M. A. Soloviev TI - Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 290 EP - 303 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a19/ LA - ru ID - TM_2020_309_a19 ER -
M. A. Soloviev. Characterization of the Moyal Multiplier Algebras for the Generalized Spaces of Type $S$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 290-303. http://geodesic.mathdoc.fr/item/TM_2020_309_a19/