On Renormalizations in Nonrenormalizable Theories
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 210-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new view of the procedure of renormalizations in nonrenormalizable theories is proposed. This view is based on the standard procedure of the BPHZ $\mathcal R$-operation, which is equally applicable to any local quantum field theory irrespective of renormalizability. The key point is that the multiplicative renormalization used in renormalizable theories is replaced by an operation in which the renormalization constant depends on the momenta over which integration in subgraphs is performed. In this case, the requirement for the counterterms to be local (precisely as in renormalizable theories) leads to recurrence relations between leading, subleading, etc., ultraviolet divergences in all orders of perturbation theory. This allows one to obtain generalized renormalization group equations for scattering amplitudes, which have an integro-differential form and lead to the summation of the leading asymptotics, just as in renormalizable theories.
@article{TM_2020_309_a13,
     author = {D. I. Kazakov},
     title = {On {Renormalizations} in {Nonrenormalizable} {Theories}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {210--217},
     publisher = {mathdoc},
     volume = {309},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a13/}
}
TY  - JOUR
AU  - D. I. Kazakov
TI  - On Renormalizations in Nonrenormalizable Theories
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 210
EP  - 217
VL  - 309
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_309_a13/
LA  - ru
ID  - TM_2020_309_a13
ER  - 
%0 Journal Article
%A D. I. Kazakov
%T On Renormalizations in Nonrenormalizable Theories
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 210-217
%V 309
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_309_a13/
%G ru
%F TM_2020_309_a13
D. I. Kazakov. On Renormalizations in Nonrenormalizable Theories. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 210-217. http://geodesic.mathdoc.fr/item/TM_2020_309_a13/

[1] Bern Z., Dixon L.J., Kosower D.A., “On-shell methods in perturbative QCD”, Ann. Phys., 322:7 (2007), 1587–1634 ; arXiv: 0704.2798 | MR | Zbl

[2] Bern Z., Huang Y., “Basics of generalized unitarity”, J. Phys. A: Math. Theor., 44:45 (2011), 454003 ; arXiv: 1103.1869v1 | MR | Zbl

[3] Bogoliubov N.N., Parasiuk O., “Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder”, Acta math., 97 (1957), 227–266 | MR

[4] N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed., Nauka, Moscow, 1976 | MR | MR

[5] J. Wiley Sons, New York, 1980 | MR | MR

[6] Bork L.V., Kazakov D.I., Kompaniets M.V., Tolkachev D.M., Vlasenko D.E., “Divergences in maximal supersymmetric Yang–Mills theories in diverse dimensions”, J. High Energy Phys., 2015:11 (2015), 059 ; arXiv: 1508.05570 | MR

[7] Borlakov A.T., Kazakov D.I., Tolkachev D.M., Vlasenko D.E., “Summation of all-loop UV divergences in maximally supersymmetric gauge theories”, J. High Energy Phys., 2016:12 (2016), 154 ; arXiv: 1610.05549v2 | MR | Zbl

[8] Britto R., “Loop amplitudes in gauge theories: Modern analytic approaches”, J. Phys. A: Math. Theor., 44:45 (2011), 454006 ; arXiv: 1012.4493v2 | MR | Zbl

[9] Elvang H., Huang Y., Scattering amplitudes, E-print, 2013, arXiv: 1308.1697v1 | Zbl

[10] Hepp K., “Proof of the Bogoliubov–Parasiuk theorem on renormalization”, Commun. Math. Phys., 2 (1966), 301–326 | Zbl

[11] Kazakov D.I., “Kinematically dependent renormalization”, Phys. Lett. B, 786 (2018), 327–331 ; arXiv: 1804.08387 | Zbl

[12] Kazakov D.I., “RG equations and high energy behaviour in non-renormalizable theories”, Phys. Lett. B, 797 (2019), 134801 ; arXiv: 1904.08690 | MR | Zbl

[13] Kazakov D.I., Borlakov A.T., Tolkachev D.M., Vlasenko D.E., “Structure of UV divergences in maximally supersymmetric gauge theories”, Phys. Rev. D, 97:12 (2018), 125008 ; arXiv: 1712.04348 | MR

[14] Kazakov D.I., Vlasenko D.E., “Leading and subleading UV divergences in scattering amplitudes for $D=8$ $\mathcal N=1$ SYM theory in all loops”, Phys. Rev. D, 95:4 (2017), 045006 ; arXiv: 1603.05501 | MR

[15] A. N. Vasil'ev, Quantum Field Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Izd. Peterb. Inst. Yader. Fiz., St. Petersburg, 1998 | MR | Zbl

[16] The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman Hall/CRC, Boca Raton, FL, 2004 | MR | Zbl

[17] O. I. Zav'yalov, Renormalized Feynman Diagrams, Nauka, Moscow, 1979 | MR | Zbl

[18] O. I. Zavialov, Renormalized Quantum Field Theory, Kluwer, Dordrecht, 1990 | MR | Zbl

[19] Zimmermann W., “Local field equation for $A^4$-coupling in renormalized perturbation theory”, Commun. Math. Phys., 6:3 (1967), 161–188 | MR

[20] Zimmermann W., “Convergence of Bogoliubov's method of renormalization in momentum space”, Commun. Math. Phys., 15:3 (1969), 208–234 | MR | Zbl