Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_309_a0, author = {T. C. Adorno and D. M. Gitman and A. E. Shabad}, title = {Magnetic {Pole} as {Produced} by a {Point-like} {Electric} {Charge} {Embedded} in {Constant-Field} {Background}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {7--17}, publisher = {mathdoc}, volume = {309}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_309_a0/} }
TY - JOUR AU - T. C. Adorno AU - D. M. Gitman AU - A. E. Shabad TI - Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 7 EP - 17 VL - 309 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_309_a0/ LA - ru ID - TM_2020_309_a0 ER -
%0 Journal Article %A T. C. Adorno %A D. M. Gitman %A A. E. Shabad %T Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 7-17 %V 309 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_309_a0/ %G ru %F TM_2020_309_a0
T. C. Adorno; D. M. Gitman; A. E. Shabad. Magnetic Pole as Produced by a Point-like Electric Charge Embedded in Constant-Field Background. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematical and theoretical physics, Tome 309 (2020), pp. 7-17. http://geodesic.mathdoc.fr/item/TM_2020_309_a0/
[1] Aaboud M. et al. (ATLAS Collaboration)., “Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC”, Nature Phys., 13:9 (2017), 852–858 ; arXiv: 1702.01625
[2] Adler S.L., “Photon splitting and photon dispersion in a strong magnetic field”, Ann. Phys., 67:2 (1971), 599–647
[3] Adorno T.C., Gitman D.M., Shabad A.E., “Magnetic response to applied electrostatic field in external magnetic field”, Eur. Phys. J. C, 74:4 (2014), 2838
[4] Adorno T.C., Gitman D.M., Shabad A.E., “Electric charge is a magnetic dipole when placed in a background magnetic field”, Phys. Rev. D, 89:4 (2014), 047504
[5] Adorno T.C., Gitman D.M., Shabad A.E., “When electric charge becomes also magnetic”, Phys. Rev. D, 92:4 (2015), 041702(R)
[6] Adorno T.C., Gitman D.M., Shabad A.E., “Coulomb field in a constant electromagnetic background”, Phys. Rev. D, 93:12 (2016), 125031 | MR
[7] Adorno T.C., Gitman D.M., Shabad A.E., Magnetic response from constant backgrounds to Coulomb sources, E-print, 2019, arXiv: 1710.00138v2
[8] Aharonov Y., Bohm D., “Significance of electromagnetic potentials in the quantum theory”, Phys. Rev., 115:3 (1959), 485–491 | MR | Zbl
[9] I. A. Batalin and A. E. Shabad, “Green's function of a photon in a constant homogeneous electromagnetic field of general form”, Sov. Phys. JETP, 33:3 (1971), 483–486 | MR
[10] Batelaan H., Tonomura A., “The Aharonov–Bohm effects: Variations on a subtle theme”, Phys. Today, 62:9 (2009), 38–43
[11] Bialynicka-Birula Z., Bialynicki-Birula I., “Nonlinear effects in quantum electrodynamics. Photon propagation and photon splitting in an external field”, Phys. Rev. D, 2:10 (1970), 2341–2345
[12] Born M., Infeld L., “Foundations of the new field theory”, Proc. R. Soc. A, 144 (1934), 425–451
[13] Diachenko M., Novak O., Kholodov R., “Vacuum birefringence in a supercritical magnetic field”, Ukr. J. Phys., 64:3 (2019), 181–188
[14] Dirac P.A.M., “Quantised singularities in the electromagnetic field”, Proc. R. Soc. London A, 133 (1931), 60–72
[15] Dirac P.A.M., “The theory of magnetic poles”, Phys. Rev., 74:7 (1948), 817–830 | MR | Zbl
[16] Erber T., “High-energy electromagnetic conversion processes in intense magnetic fields”, Rev. Mod. Phys., 38:4 (1966), 626–659 | MR
[17] Fan X. et al., The OVAL experiment: A new experiment to measure vacuum magnetic birefringence using high repetition pulsed magnets, E-print, 2017, arXiv: 1705.00495
[18] Gies H., Karbstein F., Seegert N., “Photon merging and splitting in electromagnetic field inhomogeneities”, Phys. Rev. D, 93:8 (2016), 085034 | MR
[19] Gitman D.M., Shabad A.E., “Nonlinear (magnetic) correction to the field of a static charge in an external field”, Phys. Rev. D, 86:12 (2012), 125028
[20] Heisenberg W., Euler H., “Folgerungen aus der Diracschen Theorie des Positrons”, Z. Phys., 98 (1936), 714–732
[21] Heras R., “Dirac quantisation condition: A comprehensive review”, Contemp. Phys., 59:4 (2018), 331–355
[22] Kruglov S.I., “Magnetically charged black hole in framework of nonlinear electrodynamics model”, Int. J. Mod. Phys. A, 33:03 (2018), 1850023 | MR | Zbl
[23] Kruglov S.I., “Dyonic black holes with nonlinear logarithmic electrodynamics”, Gravit. Cosmol., 25:2 (2019), 190–195 | MR | Zbl
[24] Lai D., Salpeter E.E., “Motion and ionization equilibrium of hydrogen atoms in a superstrong magnetic field”, Phys. Rev. A, 52:4 (1995), 2611–2623
[25] Mignani R.P. et al., “Evidence for vacuum birefringence from the first optical-polarimetry measurement of the isolated neutron star RX J1856.5-3754”, Mon. Not. R. Astron. Soc., 465:1 (2017), 492–500
[26] V. I. Ritus, “The Lagrangian function of an intense electromagnetic field”, Problems of Intense-Field Quantum Electrodynamics, Tr. Fiz. Inst. Lebedeva, 168, ed. by V. L. Ginzburg, Nauka, Moscow, 1986, 5–51
[27] Issues in Intense-Field Quantum Electrodynamics, Proc. Lebedev Phys. Inst., 168, Nova Science Publ., New York, 1987, 1–62
[28] Shnir Y.M., Magnetic monopoles, Springer, Berlin, 2005 | MR | Zbl
[29] Slavnov A.A., Faddeev L.D., Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978, 1988; A. A. Slavnov and L. D. Faddeev, Introduction to Quantum Theory of Gauge Fields, Nauka, Moscow, 1978, 1988 ; L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum Theory, Front. Phys., 50, Benjamin/Commings, London, 1980 ; Gauge Fields: An Introduction to Quantum Theory, 2nd ed., Westview Press, Boulder, CO, 1993 | MR | MR | Zbl
[30] Thompson C., Duncan R.C., “The soft gamma repeaters as very strongly magnetized neutron stars. I: Radiative mechanism for outbursts”, Mon. Not. R. Astron. Soc., 275:2 (1995), 255–300
[31] Valluri S.R., Mielniczuk J.W., Chishtie F., Lamm D., Auddy S., “Vacuum birefringence, the photon anomalous magnetic moment and the neutron star RX J1856.5-3754”, Mon. Not. R. Astron. Soc., 472:2 (2017), 2398–2402
[32] “The electrodynamics of the vacuum based on the quantum theory of the electron”, Early quantum electrodynamics: A sourcebook, ed. by A.I. Miller, Cambridge Univ. Press, Cambridge, 1994, 206–226 | MR
[33] Zavattini G. et al., “Intrinsic mirror noise in Fabry–Perot based polarimeters: The case for the measurement of vacuum magnetic birefringence”, Eur. Phys. J. C, 78:7 (2018), 585