On Some Sufficient Hyperbolicity Conditions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 116-134

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an arbitrary $C^1$ diffeomorphism $f$ that acts from an open subset $U$ of a Riemannian manifold $M$ of dimension $m$, $m\ge 2$, to $f(U)\subset M$. Let $A$ be a compact $f$-invariant (i.e., $f(A)=A$) subset in $U$. We propose various sufficient conditions under which $A$ is a hyperbolic set of $f$.
@article{TM_2020_308_a8,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {On {Some} {Sufficient} {Hyperbolicity} {Conditions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {116--134},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a8/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - On Some Sufficient Hyperbolicity Conditions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 116
EP  - 134
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a8/
LA  - ru
ID  - TM_2020_308_a8
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T On Some Sufficient Hyperbolicity Conditions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 116-134
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a8/
%G ru
%F TM_2020_308_a8
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. On Some Sufficient Hyperbolicity Conditions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 116-134. http://geodesic.mathdoc.fr/item/TM_2020_308_a8/