On the Solvability of a Class of Nonlinear Hammerstein--Stieltjes Integral Equations on the Whole Line
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 253-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonlinear integral equation on the whole line with a Hammerstein–Stieltjes integral operator whose pre-kernel is a continuous distribution function. Under certain conditions imposed on the nonlinearity, we prove constructive existence and uniqueness theorems for nonnegative monotone bounded solutions. Some qualitative properties of the constructed solution are also studied. In particular, the results proved in the paper contain a theorem of O. Diekmann as a special case.
Mots-clés : pre-kernel, convergence.
Keywords: iterations, monotonicity, bounded solution
@article{TM_2020_308_a18,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On the {Solvability} of a {Class} of {Nonlinear} {Hammerstein--Stieltjes} {Integral} {Equations} on the {Whole} {Line}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {253--264},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a18/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On the Solvability of a Class of Nonlinear Hammerstein--Stieltjes Integral Equations on the Whole Line
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 253
EP  - 264
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a18/
LA  - ru
ID  - TM_2020_308_a18
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On the Solvability of a Class of Nonlinear Hammerstein--Stieltjes Integral Equations on the Whole Line
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 253-264
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a18/
%G ru
%F TM_2020_308_a18
Kh. A. Khachatryan; H. S. Petrosyan. On the Solvability of a Class of Nonlinear Hammerstein--Stieltjes Integral Equations on the Whole Line. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 253-264. http://geodesic.mathdoc.fr/item/TM_2020_308_a18/

[1] Diekmann O., “Thresholds and travelling waves for the geographical spread of infection”, J. Math. Biol., 6:2 (1978), 109–130 | DOI | MR | Zbl

[2] N. B. Engibaryan, “Convolution equations containing singular probability distributions”, Izv. Math., 60:2 (1996), 249–280 | DOI | DOI | MR | Zbl

[3] N. B. Engibaryan, “Conservative systems of integral convolution equations on the half-line and the entire line”, Sb. Math., 193:6 (2002), 847–867 | DOI | DOI | MR | Zbl

[4] W. Feller, An Introduction to Probability Theory and Its Applications, v. 2, J. Wiley and Sons, New York, 1966 | MR | Zbl

[5] Kh. A. Khachatryan and A. S. Petrosyan, “On the solvability of one class of nonlinear integral equations with a noncompact Hammerstein–Stieltjes-type operator on the semiaxis”, Ukr. Math. J., 67:1 (2015), 120–145 | DOI | MR | Zbl

[6] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, Moscow, 1981 | Zbl

[7] Dover Publ., Mineola, NY, 1999 | Zbl

[8] V. S. Vladimirov and Ya. I. Volovich, “Nonlinear dynamics equation in $p$-adic string theory”, Theor. Math. Phys., 138:3 (2004), 297–309 | DOI | DOI | MR | Zbl