On the Structure of Solutions to a Model System That Is Nonstrictly Hyperbolic in the Sense of Petrovskii
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 232-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct solutions to the Cauchy problem for a model system that is not hyperbolic in the sense of Friedrichs. To this end, we apply a new geometric method for constructing solutions to the Riemann problem.
@article{TM_2020_308_a16,
     author = {V. V. Palin},
     title = {On the {Structure} of {Solutions} to a {Model} {System} {That} {Is} {Nonstrictly} {Hyperbolic} in the {Sense} of {Petrovskii}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {232--242},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a16/}
}
TY  - JOUR
AU  - V. V. Palin
TI  - On the Structure of Solutions to a Model System That Is Nonstrictly Hyperbolic in the Sense of Petrovskii
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 232
EP  - 242
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a16/
LA  - ru
ID  - TM_2020_308_a16
ER  - 
%0 Journal Article
%A V. V. Palin
%T On the Structure of Solutions to a Model System That Is Nonstrictly Hyperbolic in the Sense of Petrovskii
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 232-242
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a16/
%G ru
%F TM_2020_308_a16
V. V. Palin. On the Structure of Solutions to a Model System That Is Nonstrictly Hyperbolic in the Sense of Petrovskii. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 232-242. http://geodesic.mathdoc.fr/item/TM_2020_308_a16/

[1] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[2] Danilov V.G., Shelkovich V.M., “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Q. Appl. Math., 63:3 (2005), 401–427 | DOI | MR

[3] L. C. Evans, Partial Differential Equations, Grad. Stud. Math., 19, Am. Math. Soc., Providence, RI, 1998 | MR | Zbl

[4] P. D. Lax, Hyperbolic Partial Differential Equations, Courant Lect. Notes Math., 14, Am. Math. Soc., Providence, RI, 2006 | DOI | MR | Zbl

[5] V. V. Palin, “Geometric solutions of the Riemann problem for the scalar conservation law”, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 22:4 (2018), 620–646 | DOI | MR | Zbl