Qualitative Properties of a Duffing System with Polynomial Nonlinearity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 197-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the qualitative analysis of a nonautonomous Duffing equation with nonlinearity in the form of a monomial of odd degree. For all values of the parameters, compact localizing sets containing all compact invariant sets of the system are constructed. The behavior of the trajectories of the system outside the localizing set is analyzed, and it is shown that the trajectories of the system obey one of four scenarios.
@article{TM_2020_308_a13,
     author = {A. N. Kanatnikov and A. P. Krishchenko},
     title = {Qualitative {Properties} of a {Duffing} {System} with {Polynomial} {Nonlinearity}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {197--209},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a13/}
}
TY  - JOUR
AU  - A. N. Kanatnikov
AU  - A. P. Krishchenko
TI  - Qualitative Properties of a Duffing System with Polynomial Nonlinearity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 197
EP  - 209
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a13/
LA  - ru
ID  - TM_2020_308_a13
ER  - 
%0 Journal Article
%A A. N. Kanatnikov
%A A. P. Krishchenko
%T Qualitative Properties of a Duffing System with Polynomial Nonlinearity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 197-209
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a13/
%G ru
%F TM_2020_308_a13
A. N. Kanatnikov; A. P. Krishchenko. Qualitative Properties of a Duffing System with Polynomial Nonlinearity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 197-209. http://geodesic.mathdoc.fr/item/TM_2020_308_a13/

[1] Chen H., Li Y., “Bifurcation and stability of periodic solutions of Duffing equations”, Nonlinearity, 21:11 (2008), 2485–2503 | DOI | MR | Zbl

[2] Cheng Z., Ren J., “Harmonic and subharmonic solutions for superlinear damped Duffing equation”, Nonlinear Anal. Real World Appl., 14:2 (2013), 1155–1170 | DOI | MR | Zbl

[3] Clemson P.T., Stefanovska A., “Discerning non-autonomous dynamics”, Phys. Rep., 542:4 (2014), 297–368 | DOI | MR

[4] Guo K.-M., Jiang J., “Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map”, Phys. Lett. A, 378:34 (2014), 2518–2523 | DOI | MR | Zbl

[5] A. N. Kanatnikov, “Localization of control robust invariant compact sets in continuous systems”, Diff. Eqns., 50:11 (2014), 1560–1564 | DOI | MR | Zbl

[6] A. N. Kanatnikov, “Localization of invariant compact sets in differential inclusions”, Diff. Eqns., 51:11 (2015), 1425–1431 | DOI | MR | Zbl

[7] A. N. Kanatnikov, S. K. Korovin, and A. P. Krishchenko, “Localization of invariant compact sets of discrete systems”, Dokl. Math., 81:2 (2010), 326–328 | DOI | MR | Zbl

[8] A. N. Kanatnikov, S. K. Korovin, and A. P. Krishchenko, “Localization of compact invariant sets of discrete-time systems with disturbances”, Dokl. Math., 83:3 (2011), 433–435 | DOI | MR | Zbl

[9] A. N. Kanatnikov and A. P. Krishchenko, “Localization of invariant compact sets of nonautonomous systems”, Diff. Eqns., 45:1 (2009), 46–52 | MR | Zbl

[10] Kanatnikov A.N., Krishchenko A.P., “Localization of compact invariant sets of discrete-time nonlinear systems”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 21:7 (2011), 2057–2065 | DOI | MR | Zbl

[11] A. N. Kanatnikov and A. P. Krishchenko, “Localization of compact invariant sets of continuous-time systems with disturbance”, Dokl. Math., 86:2 (2012), 720–722 | DOI | MR | Zbl

[12] A. P. Krishchenko, “Localization of limit cycles”, Diff. Eqns., 31:11 (1995), 1826–1833 | MR | Zbl

[13] A. P. Krishchenko, “Localization of simple and complex dynamics in nonlinear systems”, Diff. Eqns., 51:11 (2015), 1432–1439 | DOI | MR | MR | Zbl

[14] A. P. Krishchenko, “Global asymptotic stability analysis by the localization method of invariant compact sets”, Diff. Eqns., 52:11 (2016), 1403–1410 | DOI | MR | Zbl

[15] Krishchenko A.P., Starkov K.E., “Localization of compact invariant sets of nonlinear time-varying systems”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 18:5 (2008), 1599–1604 | DOI | MR

[16] A. G. Kurosh, Course of Higher Algebra, Nauka, Moscow, 1968 (in Russian) | MR

[17] Starkov K.E., “On the ultimate dynamics of the four-dimensional Rössler system”, Int. J. Bifurcation Chaos Appl. Sci. Eng., 24:11 (2014), 1450149 | DOI | MR | Zbl

[18] Starkov K.E., Coria L.N., “Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy”, Nonlinear Anal. Real World Appl., 14:3 (2013), 1425–1433 | DOI | MR | Zbl

[19] Wang C., “The lower bounds of $T$-periodic solutions for the forced Duffing equation”, J. Math. Anal. Appl., 260:2 (2001), 507–516 | DOI | MR | Zbl