Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_308_a11, author = {V. V. Denisenko and V. M. Deundyak}, title = {Fredholm {Property} of {Integral} {Operators} with {Homogeneous} {Kernels} of {Compact} {Type} in the $L_2$ {Space} on the {Heisenberg} {Group}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {167--180}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a11/} }
TY - JOUR AU - V. V. Denisenko AU - V. M. Deundyak TI - Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 167 EP - 180 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_308_a11/ LA - ru ID - TM_2020_308_a11 ER -
%0 Journal Article %A V. V. Denisenko %A V. M. Deundyak %T Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2020 %P 167-180 %V 308 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2020_308_a11/ %G ru %F TM_2020_308_a11
V. V. Denisenko; V. M. Deundyak. Fredholm Property of Integral Operators with Homogeneous Kernels of Compact Type in the $L_2$ Space on the Heisenberg Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 167-180. http://geodesic.mathdoc.fr/item/TM_2020_308_a11/