Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2020_308_a0, author = {Yu. A. Alkhutov and M. D. Surnachev}, title = {H\"older {Continuity} and {Harnack's} {Inequality} for $p(x)${-Harmonic} {Functions}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {7--27}, publisher = {mathdoc}, volume = {308}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a0/} }
TY - JOUR AU - Yu. A. Alkhutov AU - M. D. Surnachev TI - H\"older Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2020 SP - 7 EP - 27 VL - 308 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2020_308_a0/ LA - ru ID - TM_2020_308_a0 ER -
Yu. A. Alkhutov; M. D. Surnachev. H\"older Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 7-27. http://geodesic.mathdoc.fr/item/TM_2020_308_a0/
[1] Yu. A. Alkhutov, “The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition”, Diff. Eqns., 33:12 (1997), 1653–1663 | MR | Zbl
[2] Yu. A. Alkhutov and O. V. Krasheninnikova, “Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition”, Izv. Math., 68:6 (2004), 1063–1117 | DOI | DOI | MR | Zbl
[3] Yu. A. Alkhutov and O. V. Krasheninnikova, “On the continuity of solutions to elliptic equations with variable order of nonlinearity”, Proc. Steklov Inst. Math., 261 (2008), 1–10 | DOI | MR | Zbl
[4] Alkhutov Yu.A., Surnachev M.D., “Regularity of a boundary point for the $p(x)$-Laplacian”, J. Math. Sci., 232:3 (2018), 206–231 | DOI | MR | Zbl
[5] Yu. A. Alkhutov and M. D. Surnachev, “Behavior of solutions of the Dirichlet problem for the $p(x)$-Laplacian at a boundary point”, St. Petersburg Math. J., 31:2 (2020), 251–271 | DOI | MR | Zbl
[6] Cruz-Uribe D.V., Fiorenza A., Variable Lebesgue spaces: Foundations and harmonic analysis, Birkhäuser, Basel, 2013 | MR | Zbl
[7] Diening L., Harjulehto P., Hästö P., Růžička M., Lebesgue and Sobolev spaces with variable exponents, Lect. Notes Math., 2017, Springer, Berlin, 2011 | DOI | MR | Zbl
[8] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 1, Oper. Theory: Adv. Appl., 248, Variable exponent Lebesgue and amalgam spaces, Birkhäuser/Springer, Basel, 2016 | MR | Zbl
[9] Kokilashvili V., Meskhi A., Rafeiro H., Samko S., Integral operators in non-standard function spaces, v. 2, Oper. Theory: Adv. Appl., 249, Variable exponent Hölder, Morrey–Campanato and Grand spaces, Birkhäuser/Springer, Basel, 2016 | MR | Zbl
[10] O. V. Krasheninnikova, “Continuity at a point for solutions to elliptic equations with a nonstandard growth condition”, Proc. Steklov Inst. Math., 236 (2002), 193–200 | MR | Zbl
[11] Růžička M., Electrorheological fluids: Modeling and mathematical theory, Lect. Notes Math., 1748, Springer, Berlin, 2000 | MR
[12] M. D. Surnachev, On Harnack's inequality for $p(x)$-Laplacian, Preprint no. 69, Keldysh Inst. Appl. Math., Moscow, 2018
[13] Trudinger N.S., “On the regularity of generalized solutions of linear, non-uniformly elliptic equations”, Arch. Ration. Mech. Anal., 42 (1971), 50–62 | DOI | MR | Zbl
[14] V. V. Zhikov, “Questions of convergence, duality, and averaging for functionals of the calculus of variations”, Math. USSR, Izv., 23:2 (1984), 243–276 | DOI | MR | MR | Zbl | Zbl
[15] V. V. Zhikov, “Averaging of functionals of the calculus of variations and elasticity theory”, Math. USSR, Izv., 29:1 (1987), 33–66 | DOI | MR | Zbl
[16] Zhikov V.V., “On Lavrentiev's phenomenon”, Russ. J. Math. Phys., 3:2 (1995), 249–269 | MR | Zbl
[17] V. V. Zhikov, “Meyers type estimates for the solution of a nonlinear Stokes system”, Diff. Eqns., 33:1 (1997), 108–115 | MR | Zbl
[18] Zhikov V.V., “On variational problems and nonlinear elliptic equations with nonstandard growth conditions”, J. Math. Sci., 173:5 (2011), 463–570 | DOI | MR | Zbl
[19] V. V. Zhikov, On Variational Problems and Nonlinear Elliptic Equations with Nonstandard Growth Conditions, Tamara Rozhkovskaya, Novosibirsk, 2017 (in Russian)