H\"older Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 7-27

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for a measurable exponent $p(x)$ is obtained that implies the Hölder continuity and Harnack's inequality for $p(x)$-harmonic functions.
@article{TM_2020_308_a0,
     author = {Yu. A. Alkhutov and M. D. Surnachev},
     title = {H\"older {Continuity} and {Harnack's} {Inequality} for $p(x)${-Harmonic} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--27},
     publisher = {mathdoc},
     volume = {308},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2020_308_a0/}
}
TY  - JOUR
AU  - Yu. A. Alkhutov
AU  - M. D. Surnachev
TI  - H\"older Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2020
SP  - 7
EP  - 27
VL  - 308
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2020_308_a0/
LA  - ru
ID  - TM_2020_308_a0
ER  - 
%0 Journal Article
%A Yu. A. Alkhutov
%A M. D. Surnachev
%T H\"older Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2020
%P 7-27
%V 308
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2020_308_a0/
%G ru
%F TM_2020_308_a0
Yu. A. Alkhutov; M. D. Surnachev. H\"older Continuity and Harnack's Inequality for $p(x)$-Harmonic Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 308 (2020), pp. 7-27. http://geodesic.mathdoc.fr/item/TM_2020_308_a0/