The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 193-211

Voir la notice de l'article provenant de la source Math-Net.Ru

In the classical representation theory of locally compact groups, there are well-known constructions of a unitary dual space of irreducible representations, the Fourier transform, and the Plancherel theorem. In this paper, we present analogs of these constructions for the discrete Heisenberg group and its irreducible infinite-dimensional representations in a vector space without topology.
@article{TM_2019_307_a9,
     author = {A. N. Parshin},
     title = {The {Mellin} {Transform} and the {Plancherel} {Theorem} for the {Discrete} {Heisenberg} {Group}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a9/}
}
TY  - JOUR
AU  - A. N. Parshin
TI  - The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 193
EP  - 211
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a9/
LA  - ru
ID  - TM_2019_307_a9
ER  - 
%0 Journal Article
%A A. N. Parshin
%T The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 193-211
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a9/
%G ru
%F TM_2019_307_a9
A. N. Parshin. The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 193-211. http://geodesic.mathdoc.fr/item/TM_2019_307_a9/