Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_307_a9, author = {A. N. Parshin}, title = {The {Mellin} {Transform} and the {Plancherel} {Theorem} for the {Discrete} {Heisenberg} {Group}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {193--211}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a9/} }
TY - JOUR AU - A. N. Parshin TI - The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 193 EP - 211 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_307_a9/ LA - ru ID - TM_2019_307_a9 ER -
A. N. Parshin. The Mellin Transform and the Plancherel Theorem for the Discrete Heisenberg Group. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 193-211. http://geodesic.mathdoc.fr/item/TM_2019_307_a9/
[1] S. A. Arnal' and A. N. Parshin, “On irreducible representations of discrete Heisenberg groups”, Math. Notes, 92:3 (2012), 295–301 | DOI | DOI | MR | Zbl
[2] M. Atiyah, The Geometry and Physics of Knots, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[3] A. A. Beilinson, “Residues and adeles”, Funct. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl
[4] Beloshapka I., “Irreducible representations of the group of unipotent matrices of order 4 over integers”, Int. Math. Res. Not., 2018 | DOI
[5] I. V. Beloshapka and S. O. Gorchinskiy, “Irreducible representations of finitely generated nilpotent groups”, Sb. Math., 207:1 (2016), 41–64 | DOI | DOI | MR | Zbl
[6] Brown I.D., “Representation of finitely generated nilpotent groups”, Pac. J. Math., 45 (1973), 13–26 | DOI | MR | Zbl
[7] R. Ya. Budylin, “Conjugacy classes in discrete Heisenberg groups”, Sb. Math., 205:8 (2014), 1069–1079 | DOI | DOI | MR | MR | Zbl
[8] Cartier P., “Representations of $p$-adic groups: A survey”, Automorphic forms, representations and $L$-functions, Pt. 1, Proc. Symp. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, 111–155 | DOI | MR
[9] J. Dixmier, Les $C^*$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969 | MR | Zbl
[10] Fulton W., Harris J., Representation theory: A first course, Grad. Texts Math., 129, Springer, New York, 1991 | MR | Zbl
[11] A. A. Kirillov, Lectures on the Orbit Method, Grad. Stud. Math., 64, Am. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[12] Lubotzky A., Magid A.R., Varieties of representations of finitely generated groups, Mem. AMS, 58, N 336, Amer. Math. Soc., Providence, RI, 1985 | MR
[13] I. G. Macdonald, Spherical Functions on a Group of $p$-Adic Type, Publ. Ramanujan Inst., 2, Univ. Madras, Madras, 1971 | MR | MR
[14] D. Mumford, Tata Lectures on Theta. I, Prog. Math., 28, Birhäuser, Boston, 1983 | DOI | MR | Zbl
[15] D. V. Osipov and A. N. Parshin, “Representations of the discrete Heisenberg group on distribution spaces of two-dimensional local fields”, Proc. Steklov Inst. Math., 292 (2016), 185–201 | DOI | DOI | MR | Zbl
[16] D. V. Osipov and A. N. Parshin, “Harmonic analysis on rank 2 valuation group of a two-dimensional local field”, Sb. Math., 211:1 (2020) | DOI | DOI | MR
[17] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I: Distributions and residues”, Math. USSR, Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl
[18] A. N. Parshin, “On holomorphic representations of discrete Heisenberg groups”, Funct. Anal. Appl., 44:2 (2010), 156–159 | DOI | DOI | MR | MR | Zbl
[19] Parshin A.N., “Representations of higher adelic groups and arithmetic”, Proc. Int. Congr. Math. (Hyderabad, India, 2010), v. 1, Plenary lectures and ceremonies, World Scientific, Hackensack, NJ, 2011, 362–392 | Zbl
[20] A. Pressley and G. Segal, Loop Groups, Oxford Math. Monogr., Clarendon Press, Oxford, 1988 | MR | Zbl
[21] Pytlik T., “A Plancherel measure for the discrete Heisenberg group”, Colloq. math., 42 (1979), 355–359 | DOI | MR | Zbl
[22] Pytlik T., “$L^1$-harmonic analysis on semi-direct products of abelian groups”, Monatsh. Math., 93:4 (1982), 309–328 | DOI | MR | Zbl
[23] A. N. Rudakov and I. R. Shafarevich, “Irreducible representations of a simple three-dimensional Lie algebra over a field of finite characteristic”, Math. Notes, 2:5 (1967), 760–767 | DOI | MR | Zbl
[24] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 | MR
[25] Urakawa H., “The heat equation on compact Lie group”, Osaka J. Math., 12:2 (1975), 285–297 | MR | Zbl