On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 180-192
Voir la notice de l'article provenant de la source Math-Net.Ru
We reconstruct hermitian $K$-theory via algebraic symplectic cobordism. In the motivic stable homotopy category $\mathrm {SH}(S)$, there is a unique morphism $\varphi \colon \mathbf {MSp}\to \mathbf {BO}$ of commutative ring $T$-spectra which sends the Thom class $\mathrm {th}^{\mathbf {MSp}}$ to the Thom class $\mathrm {th}^{\mathbf {BO}}$. Using $\varphi $ we construct an isomorphism of bigraded ring cohomology theories on the category $\mathcal Sm\mathcal Op/S$, $\overline \varphi \colon \mathbf {MSp}^{*,*}(X,U)\otimes _{\mathbf {MSp}^{4*,2*}(\mathrm {pt})} \mathbf {BO}^{4*,2*}(\mathrm {pt}) \cong \mathbf {BO}^{*,*}(X,U)$. The result is an algebraic version of the theorem of Conner and Floyd reconstructing real $K$-theory using symplectic cobordism. Rewriting the bigrading as $\mathbf {MSp}^{p,q}=\mathbf {MSp}^{[q]}_{2\smash {q-p}}$, we have an isomorphism $\overline \varphi \colon \mathbf {MSp}^{[*]}_*(X,U)\otimes _{\mathbf {MSp}^{[2*]}_0(\mathrm {pt})} \mathrm {KO}^{[2*]}_0(\mathrm {pt}) \cong \mathrm {KO}^{[*]}_*(X,U)$, where the $\mathrm {KO}^{[n]}_i(X,U)$ are Schlichting's hermitian $K$-theory groups.
@article{TM_2019_307_a8,
author = {I. A. Panin and C. Walter},
title = {On the {Relation} of {Symplectic} {Algebraic} {Cobordism} to {Hermitian} $K${-Theory}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {180--192},
publisher = {mathdoc},
volume = {307},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a8/}
}
TY - JOUR AU - I. A. Panin AU - C. Walter TI - On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 180 EP - 192 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_307_a8/ LA - ru ID - TM_2019_307_a8 ER -
I. A. Panin; C. Walter. On the Relation of Symplectic Algebraic Cobordism to Hermitian $K$-Theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 180-192. http://geodesic.mathdoc.fr/item/TM_2019_307_a8/