Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2019_307_a7, author = {Viacheslav V. Nikulin}, title = {Classification of {Degenerations} and {Picard} {Lattices} of {K\"ahlerian} {K3} {Surfaces} with {Symplectic} {Automorphism} {Group} $C_4$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {148--179}, publisher = {mathdoc}, volume = {307}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a7/} }
TY - JOUR AU - Viacheslav V. Nikulin TI - Classification of Degenerations and Picard Lattices of K\"ahlerian K3 Surfaces with Symplectic Automorphism Group $C_4$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2019 SP - 148 EP - 179 VL - 307 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2019_307_a7/ LA - ru ID - TM_2019_307_a7 ER -
%0 Journal Article %A Viacheslav V. Nikulin %T Classification of Degenerations and Picard Lattices of K\"ahlerian K3 Surfaces with Symplectic Automorphism Group $C_4$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2019 %P 148-179 %V 307 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2019_307_a7/ %G ru %F TM_2019_307_a7
Viacheslav V. Nikulin. Classification of Degenerations and Picard Lattices of K\"ahlerian K3 Surfaces with Symplectic Automorphism Group $C_4$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 148-179. http://geodesic.mathdoc.fr/item/TM_2019_307_a7/
[1] Bourbaki N., Groupes et algèbres de Lie. Chs. IV, V et VI: Groupes de Coxeter et systèmes de Tits. Groupes engendrés par des réflexions. Systèmes de racines, Éléments de mathématique, Hermann, Paris, 1968 | MR
[2] Burns D., \textup {Jr.}, Rapoport M., “On the Torelli problem for kählerian K-3 surfaces”, Ann. sci. Éc. norm. supér. Sér. 4, 8:2 (1975), 235–273 | MR | Zbl
[3] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grundl. Math. Wiss., 290, Springer, New York, 1988 | MR | Zbl
[4] The GAP Group., GAP — groups, algorithms, programming — a system for computational discrete algebra, Vers. 4.6.5, 2013 http://www.gap-system.org
[5] Hashimoto K., “Finite symplectic actions on the $K3$ lattice”, Nagoya Math J., 206 (2012), 99–153 ; arXiv: 1012.2682 [math.AG] | DOI | MR | Zbl
[6] Kondō S., “Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces (with appendix by S. Mukai)”, Duke Math. J., 92:3 (1998), 593–603 | DOI | MR | Zbl
[7] Vik. S. Kulikov, “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR, Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl | Zbl
[8] Mukai S., “Finite groups of automorphisms of K3 surfaces and the Mathieu group”, Invent. math., 94:1 (1988), 183–221 | DOI | MR | Zbl
[9] V. V. Nikulin, “On Kummer surfaces”, Math. USSR, Izv., 9 (1975), 261–275 | DOI | MR | Zbl
[10] V. V. Nikulin, “Finite automorphism groups of Kählerian surfaces of type K3”, Usp. Mat. Nauk, 31:2 (1976), 223–224 | MR | Zbl
[11] V. V. Nikulin, “Finite automorphism groups of Kähler K3 surfaces”, Trans. Moscow Math. Soc., 38 (1980), 71–135 | MR | Zbl
[12] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR, Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl | Zbl
[13] V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. I”, Izv. Math., 77:5 (2013), 954–997 | DOI | DOI | MR | Zbl
[14] Nikulin V.V., “Kählerian $K3$ surfaces and Niemeier lattices. II”, Development of moduli theory (Kyoto 2013), Adv. Stud. Pure Math., 69, Math. Soc. Japan, Tokyo, 2016, 421–471 ; arXiv: 1109.2879 [math.AG] | DOI | MR | Zbl
[15] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups”, Izv. Math., 79:4 (2015), 740–794 | DOI | DOI | MR | Zbl
[16] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II”, Izv. Math., 80:2 (2016), 359–402 | DOI | DOI | MR | Zbl
[17] V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029 | DOI | DOI | MR | Zbl
[18] V. V. Nikulin, “Classification of Picard lattices of K3 surfaces”, Izv. Math., 82:4 (2018), 752–816 | DOI | DOI | MR | Zbl
[19] V. V. Nikulin, “Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group $D_6$”, Izv. Math., 83:6 (2019), 1201–1233 | DOI | DOI | MR | Zbl
[20] Nikulin V.V., Classification of degenerations and Picard lattices of Kählerian K3 surfaces with small finite symplectic automorphism groups, E-print, 2019, arXiv: 1804.00991v2 [math.AG] | MR
[21] I. I. Pjatecki\u i-Šapiro and I. R. Šafarevič, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR, Izv., 5:3 (1971), 547–588 | DOI | MR
[22] I. R. Šafarevič, B. G. Averbuh, Ju. R. Vainberg, A. B. Žižčenko, Ju. I. Manin, B. G. Moišezon, G. N. Tjurina, and A. N. Tjurin, Algebraic Surfaces, Nauka, Moscow, 1965 | MR
[23] Proc. Steklov Inst. Math., 75, Am. Math. Soc., Providence, RI, 1967 | MR
[24] Siu Y.-T., “A simple proof of the surjectivity of the period map of K3 surfaces”, Manuscr. math., 35:3 (1981), 311–321 | DOI | MR | Zbl
[25] Todorov A.N., “Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of K3 surfaces”, Invent. math., 61:3 (1980), 251–265 | DOI | MR | Zbl
[26] Xiao G., “Galois covers between $K3$ surfaces”, Ann. Inst. Fourier, 46:1 (1996), 73–88 | DOI | MR | Zbl