On Germs of Finite Morphisms of Smooth Surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 100-131

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions related to deformations of germs of finite morphisms of smooth surfaces are discussed. Four-sheeted finite cover germs $F: (U,o')\to (V,o)$, where $(U,o')$ and $(V,o)$ are two germs of smooth complex analytic surfaces, are classified up to smooth deformations. The singularity types of branch curves and the local monodromy groups of these germs are also investigated.
@article{TM_2019_307_a4,
     author = {Vik. S. Kulikov},
     title = {On {Germs} of {Finite} {Morphisms} of {Smooth} {Surfaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {100--131},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On Germs of Finite Morphisms of Smooth Surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 100
EP  - 131
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a4/
LA  - ru
ID  - TM_2019_307_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On Germs of Finite Morphisms of Smooth Surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 100-131
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a4/
%G ru
%F TM_2019_307_a4
Vik. S. Kulikov. On Germs of Finite Morphisms of Smooth Surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 100-131. http://geodesic.mathdoc.fr/item/TM_2019_307_a4/