On Germs of Finite Morphisms of Smooth Surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 100-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

Questions related to deformations of germs of finite morphisms of smooth surfaces are discussed. Four-sheeted finite cover germs $F: (U,o')\to (V,o)$, where $(U,o')$ and $(V,o)$ are two germs of smooth complex analytic surfaces, are classified up to smooth deformations. The singularity types of branch curves and the local monodromy groups of these germs are also investigated.
@article{TM_2019_307_a4,
     author = {Vik. S. Kulikov},
     title = {On {Germs} of {Finite} {Morphisms} of {Smooth} {Surfaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {100--131},
     publisher = {mathdoc},
     volume = {307},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2019_307_a4/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - On Germs of Finite Morphisms of Smooth Surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2019
SP  - 100
EP  - 131
VL  - 307
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2019_307_a4/
LA  - ru
ID  - TM_2019_307_a4
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T On Germs of Finite Morphisms of Smooth Surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2019
%P 100-131
%V 307
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2019_307_a4/
%G ru
%F TM_2019_307_a4
Vik. S. Kulikov. On Germs of Finite Morphisms of Smooth Surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra, number theory, and algebraic geometry, Tome 307 (2019), pp. 100-131. http://geodesic.mathdoc.fr/item/TM_2019_307_a4/

[1] V. I. Arnol'd, “Normal forms for functions near degenerate critical points, the Weyl groups of $A_k$, $D_k$, $E_k$ and Lagrangian singularities”, Funct. Anal. Appl., 6:4 (1972), 254–272 | DOI | DOI | MR

[2] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer, Berlin, 1984 | MR | Zbl

[3] Cartan H., “Quotient d'un espace analytique par un groupe d'automorphismes”, Algebraic geometry and topology: A symposium in honor of S. Lefschetz, Princeton Math. Ser., 12, Princeton Univ. Press, Princeton, NJ, 1957, 90–102 | MR | Zbl

[4] Grauert H., Remmert R., “Komplexe Räume”, Math. Ann., 136 (1958), 245–318 | DOI | MR | Zbl

[5] Hamm H.A., Lê Dũng Tráng., “Un théorème de Zariski du type de Lefschetz”, Ann. sci. Éc. norm. super. Sér. 4, 6:3 (1973), 317–355 | MR | Zbl

[6] Hartshorne R., Deformation theory, Grad. Texts Math., 257, Springer, Berlin, 2010 | DOI | MR | Zbl

[7] F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, Teubner, Leipzig, 1884 | MR | Zbl

[8] Vik. S. Kulikov, “Hurwitz curves”, Russ. Math. Surv., 62:6 (2007), 1043–1119 | DOI | DOI | MR | Zbl

[9] Vik. S. Kulikov, “Factorization semigroups and irreducible components of the Hurwitz space”, Izv. Math., 75:4 (2011), 711–748 | DOI | DOI | MR | Zbl

[10] Vik. S. Kulikov, “Factorization semigroups and irreducible components of the Hurwitz space. II”, Izv. Math., 76:2 (2012), 356–364 | DOI | DOI | MR | Zbl

[11] Vik. S. Kulikov, “Factorizations in finite groups”, Sb. Math., 204:2 (2013), 237–263 | DOI | DOI | MR | MR | Zbl

[12] Vik. S. Kulikov, “Dualizing coverings of the plane”, Izv. Math., 79:5 (2015), 1013–1042 | DOI | DOI | MR | Zbl

[13] Kulikov Vik.S., On the almost generic covers of the projective plane, E-print, 2018, arXiv: 1812.01313 [math.AG]

[14] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. Math. Stud., 61, Princeton Univ. Press, Princeton, NJ, 1968 | MR | Zbl

[15] Nokano S., “On the inverse of monoidal transformation”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 6:3 (1971), 483–502 | DOI | MR

[16] Shephard G.C., Todd J.A., “Finite unitary reflection groups”, Can. J. Math., 6:2 (1954), 274–304 | DOI | MR | Zbl

[17] Stein K., “Analytische Zerlegungen komplexer Räume”, Math. Ann., 132 (1956), 63–93 | DOI | MR | Zbl

[18] Wahl J.M., “Equisingular deformations of plane algebroid curves”, Trans. Amer. Math. Soc., 193 (1974), 143–170 | DOI | MR | Zbl

[19] Zariski O., “Studies in equisingularity. I: Equivalent singularities of plane algebroid curves”, Amer. J. Math., 87 (1965), 507–536 | DOI | MR | Zbl